Phase II/Limited III Environmental Site Assessment

Former Scovil Hoe Mill
11 Candlewood Hill Road
Higganum, CT

Town of Haddam

Haddam, Connecticut

March 2018

146 Hartford Road Manchester, Connecticut 06040

March 19, 2018

Ms. Liz Glidden Town Planner Town of Haddam 30 Field Park Drive Haddam, CT 06438

RE:

Phase II/Limited Phase III Environmental Site Assessment Former Scovil Hoe Mill 11 Candlewood Hill Road, Higganum, CT

Dear Ms. Glidden:

We are pleased to submit the enclosed report of the Phase II/Limited Phase III Environmental Site Assessment for the above-referenced site. The assessment was performed using the guidance provided in the Connecticut Department of Energy and Environmental Protection's Site Characterization Guidance Document (CTDEP, 2010).

The results of our assessment are summarized in the attached report. Thank you for the opportunity to conduct this work. Please contact the undersigned if we can be of further assistance.

Sincerely,

146 Hartford Road Manchester, CT 06040 †860.646.2469

800.286.2469 f 860.533.5143 Stefanie K. Wierszchalek Senior Hydrogeologist

Daniel R. Jahne, LEP

Associate

www.fando.com

Connecticut

Maine

Massachusetts

New Hampshire

Rhode Island

Vermont

Table of Contents

Phase II/Limited Phase III Environmental Site Assessment Town of Haddam

List	of Com	mon Abbreviations	iii
1	Intro	duction	1
2	Site	Overview / Conceptual Site Model	1
	2.1	Physical Description	
		2.1.1 Site Utilities	2
		2.1.2 Adjoining Land Use	
	2.2	Site History	3
	2.3	Environmental Setting	
		2.3.1 Topography	4
		2.3.2 Geology	4
		2.3.3 Hydrogeology	5
		2.3.4 Potential Receptors	6
3	Reg	ulatory Framework	7
4	Prev	rious Investigations	10
	4.1	Summary of 2018 RECs	12
5	Phas	se II/Limited III Scope of Study	13
	5.1	Data Quality Objectives and Reasonable Confidence Protocols	
	5.2	Constituents of Concern	13
	5.3	Investigative Procedures	14
		5.3.1 Ground Penetrating Radar Survey	14
		5.3.2 Soil Sampling	
		5.3.3 Concrete Chip Sampling	
		5.3.4 Monitoring Well Installation & Development	
		5.3.5 Groundwater Sampling	
		5.3.6 Water Supply Well Sampling	
	5.4	QA/QC Review and Data Usability	17
6	Phas	se II/Limited III Investigation Results	17
	6.1	GPR Survey Results	
	6.2	Polluted Fill	
	6.3	Analytical Results for Brook Surface Soil	
	6.4	Identified Release Areas	
		6.4.1 F&O RA-1	
		6.4.2 F&O RA-2	20

Table of Contents

Phase II/Limited Phase III Environmental Site Assessment Town of Haddam

		6.4.3	F&O RA-3	21
		6.4.4	F&O RA-4	21
		6.4.5	F&O RA-5	22
		6.4.6	F&O RA-6	22
		6.4.7	F&O RA-7	23
		6.4.8	F&O RA-8	24
	6.5	Groun	dwater Sampling Results	24
	6.6	Data C	Gap Analysis	26
7	Concl	usions	and Recommendations	27
8	Refere	nces.		1
9	Limita	tions o	of Work Product	1
Tables	6			End of Text
Table 1		Summa	ary of Recognized Environmental Conditions & Release Area	S
Table 2		Monito	oring Well Construction Details & GW Elevation Data	
Table 3	Д	Summa	ary of Constituents Detected in Soil	
Table 31	В	Summa	ary of Surface Soil Analytical Results	
Table 4			ary of Constituents Detected in Concrete	
Table 5		Summ	ary of Constituents Detected in Groundwater	
Figure				End of Text
Figure 1			ocation Map	
Figure 2	<u>)</u>	Site Pla	an and Sampling Locations	
Λ	a ali a a -			End of Dancet
	ndices		Logo and Manitoring Wall Commission Departs	End of Report
Append		•	Logs and Monitoring Well Completion Reports	
Append			dwater Sampling Field Data Sheets story Reports (on CD)	
Annend	IX L	1 3006	HOLV REDOUS (OUT.L.I.)	

List of Common Abbreviations

Units of Measurement				
ug	micrograms			
mg	milligrams			
kg	kilograms			
L	liter			
ppb	parts per billion			
ppm	parts per million			
Analytica	Il Parameters and Chemical Compounds			
ETPH	extractable total petroleum hydrocarbons			
PAHs	polycyclic aromatic hydrocarbons			
PCBs	polychlorinated biphenyls			
PCE	tetrachloroethylene			
SPLP	synthetic precipitate leaching procedure			
SVOCs	semivolatile organic compounds			
TCLP	toxicity characteristic leaching procedure			
TCE	trichloroethylene			
TPH	total petroleum hydrocarbons			
VOCs	volatile organic compounds			
Regulator	ry Abbreviations			
CFR	Code of Federal Regulations			
DEC	direct exposure criteria			
DEEP ¹	Department of Energy and Environmental Protection			
ECAF	Environmental Condition Assessment Form			
GWPC	groundwater protection criteria			
I/C	industrial/commercial			
PMC	pollutant mobility criteria			
RCRA	Resource Conservation and Recovery Act			
RCSA	Regulations of Connecticut State Agencies			
Res	residential			
RSRs	Remediation Standard Regulations			
TSCA	Toxic Substances Control Act			
SWPC	surface water protection criteria			
USEPA	United States Environmental Protection Agency			
USGS	United States Geological Survey			
VC	volatilization criteria			
Other				
AOC	area of concern			
AST	aboveground storage tank			
COC	constituent of concern			
QA/QC	quality assurance/quality control			
UST	underground storage tank			

¹ In portions of this report we refer to the Connecticut Department of Energy and Environmental Protection (DEEP). The Connecticut Department of Environmental Protection (CTDEP) was re-named the Department of Energy and Environmental Protection (DEEP) in July 2011. For convenience and consistency, we refer to the agency as the DEEP throughout this report, including the timeframe prior to July 2011.

iii

1 Introduction

Fuss & O'Neill, Inc. was retained by the Town of Haddam through a State of Connecticut Department of Economic and Community Development Historic Brownfields Revitalization Grant to conduct a Phase II/Limited Phase III Environmental Site Assessment (ESA) of the former Scovil Hoe Mill property located at 11 Candlewood Hill Road, in Higganum, Connecticut (the "Site"). The Site is currently unoccupied and owned by the State of Connecticut Department of Transportation (CT DOT), which formerly used the Site as a repair and maintenance and facility.

The objective of this report was to determine if releases of hazardous substances or petroleum products occurred at the recognized environmental conditions (RECs) and areas of concern (AOCs) identified during the Phase I ESA. Identified releases at select RECs were further evaluated to assess the degree and extent of the release area relative to an evaluation for potential preliminary reuse planning purposes. Additional objectives of this report are to present the conceptual models for the 19 RECs identified on *Table 1*.

Phase II/Limited III investigations were performed using the guidance in the Connecticut Department of Energy and Environmental Protection (DEEP) Site Characterization Guidance Document (DEEP, 2010) and Remediation Standard Regulations (DEEP, 2013).

2 Site Overview / Conceptual Site Model

2.1 Physical Description

The Site is located on the south side of Candlewood Hill Road in a residential zone of Higganum, Connecticut (Middlesex County). A portion of a United States Geological Survey (USGS) topographic map showing the Site location is provided as *Figure 1* (USGS, 1971) and is available on-line at http://goto.arcgisonline.com/maps/USA Topo Maps.

According to town records, the Site is a 4-acre irregularly-shaped parcel that has been owned by the CT DOT since 1941. Structures located on the Site include two two-story brick buildings, an emergency generator shed, associated paved parking and driveway areas and grass or brush cover. The Site is currently vacant, but was used until approximately 2014 by the CT DOT as a vehicle repair and maintenance facility. A Site plan depicting the current Site layout is provided as *Figure 2*.

The two main buildings were historically part of the D&H Scovil Hoe Company Mill No. 4, with the brick building located on the northern portion of the Site identified as Building 81-115 and the building on the southern portion of the Site as Building 81-106. The mill, which manufactured farming equipment such as planters, hoes, and milled feldspar, operated the Site from approximately 1844 through 1941.

2.1.1 Site Utilities

Water and Sewer

The Site has historically been served by an on-site septic leaching field and two potable water supply wells (*Figure 2*). One potable water supply well is located on the upgradient, westernmost edge of the Site, which was reportedly the supply well used by the CT DOT through 2014. DOT personnel reported that this well was installed at a depth of 128 feet below grade, is constructed of 8" schedule-80 pipe and has a pump set at approximately 100 feet below grade. A historic potable water sample from an interior tap served by this well in 2006, identified concentrations of sodium, chloride, and barium below applicable drinking water criteria.

A second water supply well was identified beneath a manhole, north of Building 81-106. This well likely served both Site buildings during its operation based on observation of water supply piping in a subgrade utility trench located perpendicular to the buildings (*Figure 2*). Based on observation of the accessible visible piping, the supply well is no longer connected to either building, but the downhole well apparatus (well pump, riser pipe) may still be in place. No information pertaining to the construction details of this supply well was identified during the Phase I assessment.

Heat

While the Site buildings are not currently heated, Building 81-115 was reportedly formerly heated using fuel oil stored in a 2,000-gallon underground storage tank (UST) located adjacent to the exterior of the northeast building corner. Similarly Building 81-106 was reportedly heated using fuel oil stored in a 2,000-gallon UST located adjacent to the easternmost wall of the building. DOT removed these USTs in 2014 as documented in a January 2015 Tank Closure Report prepared by TRC Solutions.

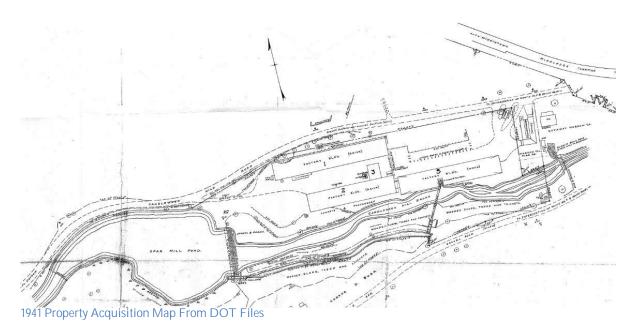
Historically, as documented on Sanborn maps, the mill buildings were supplied heat via coal stoves. A coal bin is depicted in the Sanborn maps to the east of Building 81-115.

Other Utilities

- Eversource supplies electricity to the Site via overhead lines along Candlewood Hill Road.
- No electric transformers were observed onsite.
- A stormwater line extends from the toe of the slope of Candlewood Hill Road below Building 81-115 to the southeast discharging to Candlewood Hill Brook.

• The former Scovil Hoe Mill operation had an extensive hydropower network comprised of a former pond (Spar Mill Pond) at the western portion of the Site. Water from the pond was transported to a former building located east of Building 81-106 through a flume located on the south side of Candlewood Hill Brook. A raceway crossing over Candlewood Hill Brook powered a turbine located within the former building. There is evidence of a former subgrade trench network in both Building 81-115 and Building 81-106 that may have been associated with this system. The original purpose of the previously mentioned utility trench located perpendicular to the two buildings may have also been associated with the former hydropower system.

2.1.2 Adjoining Land Use


Based on observations made during the site inspection and available mapping, properties adjoining the Site include the following:

Address	Description	Direction from Site
261 – 271 Saybrook Road	Residential	North
7 Candlewood Hill Road	Community Center/Former volunteer fire building	East
7 – 44 Maple Avenue	Residential	South
Laurel Heights Road	Residential	West
12-60 Candlewood Hill Road	Forest/residential	West

2.2 Site History

Although the date of first development of the Site is unknown due to its age, historic records from the Town of Haddam suggest that the Site was occupied by an early sawmill and then a feldspar mill prior to being purchased by D&H Scovil Hoe Company for their Mill Complex #4 around approximately 1880. A large wooden building, labeled "factory building" in a 1941 town property map, was reportedly constructed on the Site as early as the 1830s. This structure appears to have been demolished by 1950. The 1881 map of Higganum Village suggests that other smaller structures may also have historically existed on the Site. Building 81-106 was reportedly constructed in 1887. Building 81-115 was reportedly built around 1905 to house the forge shop. The Site remained in Scovil Mill's possession until 1931 when it was occupied by Higganum Ice Company from until 1941. At this time, the property was purchased by the CT DOT and the buildings converted into a garage complex.

A pond appears to have occupied the western portion of the Site from at least 1881 through 1941. In the 1941 and 1950 aerial photos, it appears as though the pond was being filled. The 1957 photo revealed that the pond had been entirely filled. Subsequent, environmental sampling of the fill indicated that it had been filled with a variety of polluted soil and construction materials as further described on *Table 1* as REC-1. The aerial photographs from the 1970's indicate a cone-shaped pile, which could be a sand or salt pile on the former pond area.

2.3 Environmental Setting

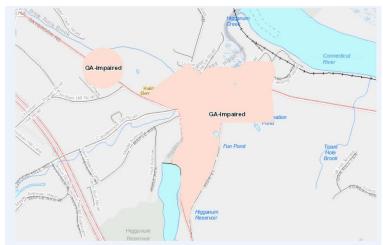
2.3.1 Topography

The topography of the Site slopes down moderately to the south towards Candlewood Hill Brook and slopes down gradually from the western to the eastern portion of the Site (USGS, 1971). The regional topography slopes down gradually to the northeast toward the Connecticut River.

2.3.2 Geology

Surficial Geology

Surficial material at the Site is mapped as glacially derived thin till, generally described as being between 10 and 15 feet in thickness (Stone, et al., 1992). Fill material, comprised of ash, metal, brick, concrete, and asphalt fragments, is also present at the Site as confirmed in the boring logs completed by Fuss & O'Neill during the November 2017 investigation.


Bedrock Geology

Bedrock beneath the Site is mapped as Monson gneiss, a medium- to coarse-grained gneiss ranging from light to dark in color (Rodgers, 1985). Based on boring logs completed by Fred C. Hart Associates during a 1986 investigation, depth to bedrock at northeastern corner of the Site is approximately 34 feet below grade and depth to bedrock adjacent to the retaining wall comprising the former dam is approximately 14 feet below grade. Boring logs completed by Diversified Technology Consultants (DTC) during a 2006 investigation identified depth to bedrock at the Site between 6 and 14 feet below grade across the Site. Based on boring logs completed by Fuss & O'Neill during their 2017 investigation, depth to bedrock in the center of the Site, around the two buildings, is between 7.5 and 15 feet below grade.

2.3.3 Hydrogeology

Groundwater

The quality of groundwater beneath the Site is classified by the Connecticut Department of Energy and Environmental Protection as GA (DEEP, 2017). GA groundwater is presumed to be used for existing private and potential public or private supplies of water suitable for drinking without treatment (CTDEP, 2011). Groundwater quality east, north, northeast, and southeast of the intersection of Saybrook Road and Rt 81 has been designated by DEEP as "GA-Impaired". Groundwater quality with an impaired goal has the same use goal as GA, but there are known or potential impairment sources as further described in *Section 4*.

Shaded Area designating GA-Impaired Groundwater Quality in the Village of Higganum

Depth to groundwater at the Site ranges from approximately 2 to 15 feet below grade. Groundwater elevation data from investigations have indicated that groundwater at the Site generally flows to the southeast, towards Candlewood Hill Brook.

The direction of groundwater flow within the surficial geological unit is influenced by a number of factors, including the physical characteristics of the geological unit (such as particle size), the local topography, the presence of surface water bodies, the depth to bedrock, and the type of aquifer. For an

unconsolidated, unconfined aquifer, groundwater generally flows in the direction of the greatest topographic gradient. Based on USGS mapping and field observations of the local topography, the inferred groundwater flow direction is to the south and to the east.

Surface Water

The nearest surface water body, Candlewood Hill Brook, is located within the subject Site, flowing west to east along the southern portion of the Site (USGS, 1971). Candlewood Hill Brook is classified by the State of Connecticut as A (DEEP, 2017). Designated uses of such inland surface waters are for potential drinking water supply, fish and wildlife habitat, recreational use, agricultural and industrial supply and other legitimate uses including navigation (CTDEP, 2011). Candlewood Hill Brook flows northwest to join with other tributaries that eventually discharge to the Connecticut River, located approximately 0.6 miles northwest of the Site. Topographic maps from the 1940's indicate that Candlewood Hill Brook was dammed in the western third of the Site forming Spar Mill Pond. Spar Mill Pond formerly extended from the existing brook north to the toe of the slope of Candlewood Hill Road. The pond provided water to a flume located on the south side of Candlewood Hill Brook, which served as water power for a former mill building located east of Building 81-106.

The Connecticut River has a classification of SB in this area. Designated uses of such coastal and marine surface waters are for marine fish, shellfish and wildlife habitat, shellfish harvesting for transfer to approved areas for purification prior to human consumption, recreation, industrial and other legitimate uses including navigation (CTDEP, 2011).

2.3.4 Potential Receptors

A preliminary assessment was conducted to evaluate whether sensitive human health or ecological receptors are present at or directly downgradient of the Site. The results of this evaluation are presented below:

- Endangered Species Based on DEEP Natural Diversity Data Base (NDDB) mapping, the Site is located in an area with state and federal listed species & significant natural communities; which indicates that a potential conflict with a listed species (CTECO, 2018).
- Ecological Receptors An ecological risk assessment has not been conducted; however, given
 the proximity of the Site to the Candlewood Hill Brook, the potential for ecological receptors to
 be impacted by Site exists.
- Flood Zones FEMA Mapping indicates that 100-year and 500-year flood zones exist on the southern portion of the site extending into the upland.
- Surface Waters The nearest surface water body is Candlewood Hill Brook, located within the Site boundary, flowing west to east along the southern portion of the Site.
- Aquifer Protection Areas No aquifer protection areas were identified within a 0.5-mile radius of the Site (CTECO, 2018).

- Public Water Supply Wells The Atlas of Public Water Supply Sources and Drainage Basins of Connecticut (CTDEEP, 1982) shows no public water supply wells within 0.5-mile radius of the Site.
- Private Water Supply Wells The Site is served by a private water supply well located on the
 upgradient, westernmost edge of the Site. Private supply wells serve the entire Village of
 Higganum. A 2005 Water Quality Monitoring Report, conducted by Diversified Technology
 Consultants, identified at least 20 private water supply wells in the vicinity of the Site. These
 private supply wells, including the on Site water supply wells were sampled by DTC in 2005 as
 discussed further below in Section 4.
- Physical Contact with Soil The potential exists for site occupants and visitors to be exposed
 to impacted soil or fill in portions of the Site that are not paved or covered by the current
 building footprints. The potential also exists for future Site occupants and visitors to be
 exposed to impacted soil or fill if redevelopment requires removal of the existing building or
 asphalt paving.
- Potential for Vapor Intrusion VOCs are not present in site groundwater at concentrations that could result in potential vapor intrusion into buildings constructed over the groundwater plume. Additional rounds of groundwater monitoring would be required to evaluate groundwater quality over seasonal trends.

3 Regulatory Framework

The Connecticut Remediation Standard Regulations (RSRs) are the clean-up standards in the State of Connecticut. They also contain procedures to evaluate whether actions (e.g., remediation or institutional controls) will be required to address identified releases of hazardous substances. The RSRs require that the nature and extent of release areas be fully characterized prior to making a final determination of compliance with the RSRs. In instances where AOCs have not been fully characterized, baseline RSR criteria are presented alongside the analytical data as a preliminary evaluative tool.

The RSR criteria that apply to the Site are discussed below.

RSR Criteria Overview

RSR Soil Criteria	Description of Criteria Objectives	Common Alternatives to Compliance with Baseline Criteria
Direct Exposure Criteria (DEC)	DEC are applicable to soil within 15 feet of the ground surface. Soil impacted by a release is typically compared to the residential (Res) DEC unless alternatives or variances are applied.	Industrial/Commercial Criteria ¹ Inaccessible Soil ² Engineered Controls ³ Incidental Sources ⁴
Pollutant Mobility Criteria (PMC)	The PMC protect groundwater from constituents leaching out of impacted soil and are dependent upon the groundwater quality classification of a site. Since the Site is located in a GA-designated area, the GA pollutant PMC were used. The GA criteria apply only to soil located above the seasonal low water table.	Engineered Controls ³ Incidental Sources ⁴ SPLP Analysis ⁵ Environmentally Isolated Soil ⁶ Variances for fill ⁷ Groundwater monitoring ⁸
Removal of Dense Non-Aqueous Phase Liquids (DNAPL)	DNAPL shall be contained or removed from soil and groundwater to the maximum extent prudent.	None
RSR Groundwater Criteria	Description of Criteria Objectives	Common Alternatives to Compliance with Baseline Criteria
Background	The RSRs require that groundwater in a GA area be remediated to background concentrations, which are generally understood to be the concentrations at the nearest location upgradient of and unaffected by the release.	Use of the Groundwater Protection Criteria (GWPC) ⁹
Surface Water Protection Criteria (SWPC)	The SWPC ensure that surface water quality is not impaired by the discharge of contaminated groundwater into a surface water body. Groundwater at the Site discharges to Candlewood Hill Brook. The 95 percent upper confidence limit (UCL) of the arithmetic mean of all sample results representative of the groundwater plume is equal to or less than the SWPC.	The SWPC apply to a groundwater plume at the point where it discharges to a surface water body, in this instance, Candlewood Hill Brook. In instances where a surface water body is not located adjacent to the site, the downgradient property boundary is often considered the "point of discharge" for the site.
Volatilization Criteria (VC)	Volatilization criteria protect human health from volatile substances (i.e. VOCs) in shallow groundwater that may migrate into overlying buildings and apply to groundwater within 15 feet of the ground surface or a structure intended for human occupancy. The residential (Res) VC apply unless a land use restriction is recorded. Groundwater at the Site is within 15 feet of the ground surface.	Industrial/Commercial Criteria ¹ Vapor mitigation systems ¹⁰

Description of Common Alternatives

- 1. Industrial/Commercial Criteria If a property is used exclusively for industrial or commercial activities and an Environmental Land Use Restriction (ELUR) is recorded to prohibit residential use of such property, the industrial/commercial criteria may be applied. This is applicable for both DEC and VC.
- 2. Inaccessible Soil The DEC for soil can be waived if the soil is considered inaccessible and an ELUR prohibiting disturbance of such soil is recorded. Inaccessible soil is defined follows:
 - More than four feet below the ground surface
 - More than two feet below a paved surface consisting of at least three-inches of bituminous concrete or concrete, which two feet may include the pavement sub-base
 - Polluted fill beneath a bituminous concrete or concrete surface consisting of at least three-inches of bituminous concrete or concrete if such fill meets the following criteria:
 - § Semi-volatile compounds or petroleum hydrocarbons in the fill exceeding the DEC are normal constituents of bituminous concrete
 - Metals in the fill do not exceed two times the applicable DEC
 - § No other compounds exceed the DEC
 - o Beneath a building or DEEP-approved permanent structure
- 3. Engineered Controls Section 22a-133k-2(f)(2) of the RSRs provides a variance to the DEC if a DEEP-approved engineered control is installed to physically isolate the underlying soil, thereby minimizing the potential for contact with the soil. The RSRs also provide a variance to the PMC if the DEEP-approved impermeable engineered control is constructed to minimize the migration of liquids through the soil. With an engineered control in place and an ELUR prohibiting unauthorized disturbance of the engineered control recorded, the DEC and/or the PMC do not apply.
- 4. Incidental Sources The DEC and PMC do not apply to metals, petroleum hydrocarbons or semivolatile substances if such pollution is the result of incidental releases due to the normal operation of motor vehicles (not including refueling or repair) or normal paving and maintenance of a bituminous concrete surface.
- 5. SPLP Analysis In order to evaluate the actual leaching potential of constituents of concern (COCs), samples can be analyzed using the synthetic precipitate leaching procedure (SPLP) and, for GA areas, compared to the groundwater protection criteria (GWPC).
- 6. Environmentally Isolated Soil Polluted soil beneath a building can be considered environmentally isolated if such soil is above the seasonal high water table, is not polluted with volatile organic substances (or, if such substances are present, they have been reduced in concentration to the maximum extent prudent), and is not a continuing source of contamination. The PMC do not apply to environmentally isolated soils, provided an appropriate ELUR is recorded to prohibit disturbance of the soil.
- 7. Variances for Fill The RSRs include two variances from the PMC for fill:
 - Variance for Wood and Coal Ash Section 22a-133k-2(c)(4)(B) of the RSRs include an exception from the pollutant mobility criteria for fill containing only coal, coal ash, wood ash, and/or asphalt fragments.
 - Widespread Polluted Fill Variance RCSA 22a-133k-2(f)(1) permits the DEEP to issue a variance from the pollutant mobility criteria for widespread polluted fill provided the property meets certain conditions.
- 8. Groundwater Monitoring For substances other than VOCs, Section 22a-133k-2(c)(4)(C) of the RSRs allows an exemption from the PMC based on four consecutive quarters of groundwater sampling under

- certain conditions that consider precipitation infiltration, compliance with applicable groundwater criteria, representativeness of sampling locations, and stability of the groundwater plume.
- 9. GWPC Application The GWPC apply in GA areas where water distribution systems are available within 200 feet of the parcel, the groundwater plume is not located in an aquifer protection area, the plume is not located within an area of influence of a public water supply well, and the background concentration for groundwater is equal to or less than the groundwater protection criteria.
- 10. Vapor Mitigation Systems With notification to the DEEP, engineered systems such as vapor barriers and sub-slab depressurization systems (SSDS) can be used to mitigate potential VOC vapor intrusion. When such systems are in place and properly monitored and maintained, the VC do not apply (22a-133k-3(c)(3)(B)).

4 Previous Investigations

Documents that describe investigation and remediation activities conducted at the Site are listed below followed by a brief summary of key findings based on the previous investigations.

Date/Consultant	Document Title
January 2001 Marin Environmental, Inc.	Phase I Environmental Site Assessment
April 2002 HRP Associates, Inc.	Environmental Condition Assessment Form (ECAF) - ConnDOT Site #25
November 2005 DTC	Water Quality Monitoring Evaluation Report – ConnDOT Site #25
December 2005 DTC	Task 240 Water Quality Monitoring Evaluation Report - ConnDOT Site #25
January 2007 DTC	Task 220 Exploratory Site Investigation
January 2015 TRC Solutions	Underground Storage Tank Closure Report – ConnDOT Higganum Repair Garage
March 2016 TRC Solutions	Underground Tank Closure Report Addendum – ConnDOT Higganum Repair Garage
September 2016 Fuss & O'Neill, Inc.	Summary of Existing Conditions
February 2018 Fuss & O'Neill, Inc.	Phase I Environmental Site Assessment

The 2001 Phase I ESA identified fourteen potential areas of concern (AOCs) on the Site, including the suspected fill area, floor drains, hydraulic lifts, former solvent storage and cleaning areas, utility pits, UST areas, historical forge shop, septic tank and an area of former drum storage. The primary environmental concerns noted included the following:

Floor drains, observed throughout the Site buildings, reportedly formerly discharged into a
catch basin and then directly into Candlewood Hill Brook. At the time the Phase I ESA was
conducted, the floor drains reportedly discharged to the on-site septic tank.

The suspected fill area, on the western section of the Site (approximately ½ to 1 acre), was observed at a higher elevation than the rest of the Site. Two piles of material (including asphalt, soil and concrete), existed in this area; as well as a pile of creosoted wooden beams. Historical documents indicated that this area was also the location where approximately 4-5 drums of pesticides/herbicides and approximately 2,000-gallons of pavement sealer were buried in the late 1970s.

In June 1988, approximately 70 cubic yards of joint sealer (a tar-like substance) and related impacted soil was removed from this area. Reportedly, at this time, three drums containing joint sealer and one drum containing an unknown liquid were encountered and removed during soil excavation activities.

- Widespread concentrations of PAHs, ETPH, arsenic and lead (many exceeding RSR criteria) identified in soil on Site is likely associated with the presence of historic impacted fill material across the property, rather than solely attributable to specific release areas.
- The 2001 Phase I ESA identified a total of 5 current underground storage tanks (USTs), 6 former USTs, and one above ground storage tank (AST) at the Site as summarized in the following table.

Tank ID	Capacity (gallons)	Content	Date Installed	Date Removed	Tank Construction
H-1	2,000	Heating Oil #2	1941	1989	Steel
D-1	550	Diesel	1955	1989	Steel
R-1	3,000	Unleaded Gasoline	1960	1989	Steel
R-2	3,000	Unleaded Gasoline	1960	1989	Steel
H-2	2,000	Heating Oil #2	1962	1989	Steel
W-1	1,000	Waste Oil	1968	1989	Steel
R1-R1	4,000	Unleaded Gasoline	1989		Fiberglass
D1-R1	4,000	Diesel	1989	-	Fiberglass
H1-R1	2,000	Heating Oil #2	1989	-	Fiberglass
H2-R1	2,000	Heating Oil #2	1989		Fiberglass
W1-R1	550	Waste Oil	1989		Fiberglass

Several private potable supply wells adjacent to the facility were reportedly impacted by sodium and trichloroethene (TCE). While the sodium was reported to originate on-Site, the Site was not identified as the source of the TCE. A historical report recommended that an alternative potable water source be pursued in order to reduce the number of human receptors affected by impacted groundwater. DEEP issued the Town of Haddam Consent Order #4793 in March 1989 indicating that the Town had a community pollution problem and that the DEEP was unable to determine the entity responsible for impacting the groundwater. As such potable drinking water has been supplied to several properties on Depot Road, Candlewood Hill Road, and Saybrook Road in the vicinity of the Site.

Additionally, the Task 240 water quality monitoring evaluation conducted in 2005 included the sampling of 21 drinking water supply wells within the Site area. Sampling results from four properties located south of Candlewood Hill Brook (7 Killingworth Road, 18 Killingworth Road, 7 Maple Avenue and 8 Hull Avenue) identified concentrations of dieldrin exceeding the CT DPH action level. These detections prompted a significant environmental hazard notification under Connecticut General Statutes Section 22a-6u.

Release Areas

Subsurface investigation activities conducted at the Site included the advancement of soil borings and collection of soil samples, installation of groundwater monitoring wells and collection of groundwater samples, sediment sampling from Candlewood Hill Brook, and a ground-penetrating radar (GPR) survey.

Specifically, the findings of the Task 220 Site Investigation conducted by DTC identified the following 12 release areas. The specific description, details and release mechanisms for each release area are summarized on the attached table.

- DTC-RA-1: Historical Fill/Dump Area (western portion of Site)
- DTC-RA-2: Buried Drums of Joint Sealer (southern portion of Site)
- DTC-RA-3: Drum Storage Shed (southwest of original mill building)
- DTC-RA-4: Solvent Steam Cleaning Area (south of repair bays)
- DTC-RA-5: Historic Solvent Storage Area
- DTC-RA-6: Repair Bays & Fuel Pump Island
- DTC-RA-7: Septic Tank & Leachfield
- DTC-RA-8: Diesel Fuel UST (northeast corner of southern building)
- DTC-RA-9: Heating Oil & Gasoline USTs (east of DTC-RA-8)
- DTC-RA-10: Former Heating oil & Diesel UST Locations (west of northern building)
- DTC-RA-11: Former USTs (located between the two buildings)
- DTC-RA-12: Former Heating oil UST (south of southern building)

Additionally Site groundwater has been impacted by varying concentrations of sodium and chloride. While a salt storage area was formerly located at the Site, reportedly in the area west of the maintenance buildings, the exact location is unknown.

No VOCS, ETPH, PAHs, PCBs, chlorinated pesticides or chlorinated herbicides were identified in the seventeen monitoring wells (with the exception of a trace detection of naphthalene in MW-10D) or the on-site water supply well.

4.1 Summary of 2018 RECs

Nineteen (19) RECs were identified in Fuss & O'Neill's February 2018 Phase I ESA. A complete description of each REC identified in the 2018 Phase I ESA, as well as the corresponding historical

REC/AOC and Release Area designations is presented in *Table 1*. Locations of the AOCs are shown on *Figure 2*.

5 Phase II/Limited III Scope of Study

In November 2017, Phase II/III investigations were conducted at select RECs identified on *Table 1*. Following the November 2017 mobilization, the data was reviewed and a preliminary conceptual release determination was developed for each REC. Through this process, release determination data gaps were also identified for select RECs.

This section provides an overview of the methods used to investigate the Site and evaluate the data collected and describes data quality objectives, constituents of concern, laboratory methods used to analyze environmental samples, and field investigation methods.

5.1 Data Quality Objectives and Reasonable Confidence Protocols

Data quality objectives are used to ensure that data is collected in a manner that permits it to be used to evaluate a site and support decisions based on those evaluations. Procedures used to ensure that the DQOs for the project were met include:

- Development of preliminary conceptual models used to guide the selection of appropriate constituents of concern and sampling locations
- Selection of analytical methods with appropriate detection limits
- Use of pre-determined sample handling and custody procedures
- · Use of pre-determined data management and documentation procedures
- Selection of sampling locations and constituents of concern appropriate to the potential release area
- Use of trip blanks, duplicates and laboratory matrix spikes (MS) for quality assurance/quality control (QA/QC)
- Use of Connecticut's Reasonable Confidence Protocols and laboratory QA/QC procedures

5.2 Constituents of Concern

A list of constituents of concern was developed for each REC. The constituent list comprises those compounds most likely to be released based on knowledge of Site operations and results of any previous investigation. As previously discussed, a list of the primary constituents used in Site activities is provided in *Table 1*. The constituents of concern and the analytical methods used are included in the table below.

Constituent of Concern	Analytical Method
VOCs	Field screening using a photoionization detector (PID). Where suspected, VOCs were confirmed with analysis by EPA Method 8260.
Petroleum hydrocarbons	Connecticut ETPH Method
PAHs	EPA Method 8270
PCBs	EPA Method 8082
RCRA 8 Metals	SW6010 (arsenic, barium, cadmium, chromium, copper, lead, nickel, selenium, silver, and zinc). SW-7471 (mercury)
Pesticides	SW 8081B
Sodium/Chloride	SW 6010C

These analytical methods were selected to identify and evaluate potential releases because they are capable of achieving analytical detection limits less than the baseline numeric RSR clean-up criteria applicable to the Site.

Phoenix Environmental Laboratories, a Connecticut-certified laboratory, of Manchester, Connecticut (Phoenix), conducted all sample analyses during the investigation.

5.3 Investigative Procedures

The Phase II/Limited III investigation can be broken down into the following general field methods used to develop lines of evidence for each REC based on its evolving conceptual site model.

5.3.1 Ground Penetrating Radar Survey

On November 9, 2017, Fuss & O'Neill oversaw Underground Surveying, LLC of Brookfield, Connecticut as they completed a GPR survey of select areas at the Site. The GPR survey areas included the locations of former USTs and an approximate area of an underground utility tunnel between the two Site buildings. The GPR survey was conducted in an effort to confirm the presence, location and orientation of remaining USTs, the subsurface tunnel, or other anomalies, which could indicate existing subsurface features. The survey was conducted with the Geophysical Survey Systems, Inc. SIR-3000TM.

5.3.2 Soil Sampling

Manual Soil/Sediment Sampling

On November 14, 2017, Fuss & O'Neill also collected five surficial soil samples (FOSS-01 through FOSS-05) from various locations along the bank of the Candlewood Hill Brook. These samples were collected from approximately 0-0.5 feet below grade using manual hand tools. The purpose of these

samples was to evaluate potential impacts to the brook and surficial soils along the brook embankment from the Site.

The five surficial soil samples were submitted for laboratory analysis of RCRA 8 metals, ETPH and PAHs.

Direct-Push Soil Sampling

Between November 15 and 16, 2017, Fuss & O'Neill oversaw Glacier Drilling LLC advance 20 soil borings at select locations across the Site using a direct-push, Geoprobe® drill rig. Soil samples were collected continuously from the ground surface using a 60-inch, stainless steel sampler, and each soil core was inspected by a field scientist for physical evidence of contamination, such as staining or odors. Where VOCs were a potential constituent of concern, samples were also field-screened for vapor-phase VOCs using a photoionization detector (PID).

Soil sampling intervals were selected to characterize the maximum concentrations of constituents of concern within a release area and/or confirm the extent of impacted soil. Alternatively, if visual inspection and field screening did not yield evidence of impacted soil, samples were selected for laboratory analysis from predetermined intervals based on the conceptual release model for each of the following RECs:

REC-1
 REC-8 & 9
 REC-2
 REC-10
 REC-3
 REC-11
 REC-5
 REC-14
 REC-6
 REC-15
 REC-15
 REC-16

Refer to *Table 1* for the description and conceptual site model of each REC listed above. Field observations at each boring were recorded on the boring logs included as *Appendix A*.

5.3.3 Concrete Chip Sampling

Four concrete chip samples were collected from borings (FOSB-10, FOSB-11, FOSB-14 and FOSB-15) advanced within the building interiors during the investigation.

The concrete chip samples were collected from areas which demonstrated evidence of petroleum staining, concrete deterioration from salt and chemicals, or visible rings from past drum storage at select locations within the Site buildings. While petroleum releases to the floor surfaces was evident, the concrete samples were submitted for laboratory analysis of PCBs to determine if the concrete slab floors were impacted with PCBs.

5.3.4 Monitoring Well Installation & Development

Following advancement of the borings, two groundwater monitoring wells (FOMW-01 & FOMW-02) were installed at the Site using the direct-push Geoprobe® drill rig. Refusal on bedrock was encountered at each monitoring well location at approximately 8 feet below grade. Therefore, the monitoring wells were completed at 8 feet below grade and were constructed with standard 1.5-inch PVC riser and a five-foot, pre-packed, PVC screened interval that intersected the water table at each location. Each monitoring well was finished with flush-mount curb boxes. The specific monitoring well construction details are provided on the well completion logs in *Appendix A* and are summarized on *Table 1*.

Following installation, the newly installed monitoring wells and nine existing monitoring wells were developed using surge-and-purge techniques to remove suspended sediments from the well and to increase the hydraulic connection between the wells and the aguifer.

5.3.5 Groundwater Sampling

On November 22, 2017, Fuss & O'Neill collected groundwater samples from thirteen monitoring wells (11 previously existing wells and the 2 newly installed monitoring wells). Prior to groundwater sampling, each monitoring well was developed using surge and purge techniques to remove residual sediment from the well and to improve hydraulic connectivity to the surrounding aquifer. Additionally, the depth to water was measured at each well (*Table 1*).

A Fuss & O'Neill hydrogeologist sampled each well using a peristaltic pump and dedicated tubing, and following low-flow sampling techniques. Groundwater quality parameters including pH, specific conductivity, dissolved oxygen, temperature, turbidity, and oxidation/reduction potential were monitored and recorded at approximately 3-minute intervals until each had stabilized. The groundwater quality parameters were recorded on the field data sheets, provided as *Appendix B*.

5.3.6 Water Supply Well Sampling

Additionally on November 22, 2017, Fuss & O'Neill collected a sample from the supply well located on the western portion of the Site. The results from this single event analysis should be interpreted as screening data as a shallow sample from less than 15 feet below the ground surface was collected using a peristaltic pump. The electricity for the well pump and water piping were disconnected from the building preventing operation of the well pump and collection of a representative sample from the deeper bedrock aquifer.

The screening sample was submitted for laboratory analysis of sodium, chloride, RCRA 8 metals, VOCs, PAHs and pesticides.

5.4 QA/QC Review and Data Usability

The results for QA/QC samples submitted by Fuss & O'Neill (trip blanks and duplicates) and laboratory narratives provided with each lab report were reviewed to identify issues that could affect the usability of the data. The results of the review are summarized below.

Trip Blanks

Trip blanks for VOC analysis were provided by the laboratory to accompany each cooler of environmental samples to be analyzed for VOCs. Trip blank results were used to determine whether samples may have been compromised as a result of sample container handling or transport.

A total of three trip blanks were submitted for the investigation activities; two with the soil samples and one with the groundwater samples. VOCs were not detected above laboratory reporting limits in any of the trip blanks submitted.

Duplicate Samples

One duplicate soil sample was collected during the subsurface investigation activities conducted in November 2017. The duplicate sample was collected at the same time as the corresponding primary sample and analyzed for the same parameters.

Precision is measured by the relative percent difference (RPD) between the primary and duplicate sample results. RPD goals are \leq 50 percent for soil and \leq 30 percent for water. RPDs during the investigation were generally within the target range. Where RPDs were higher than these ranges, the difference typically was attributed to sample heterogeneity and the presence of urban fill materials. Overall, the variation in RPDs is not expected to affect the interpretation of analytical results, but as a conservative measure, release areas were evaluated with respect to the greater of primary or duplicate analytical results.

Reasonable Confidence Protocols

The reasonable confidence protocol packages provided with laboratory reports were reviewed and Phoenix reported that "reasonable confidence" was achieved on all analyses conducted. A review of the narratives identified minor QA/QC issues regarding laboratory method controls/blanks that were considered in interpreting the data. These issues were reviewed and it was determined that the usability of the data was not affected

6 Phase II/Limited III Investigation Results

The results from the investigation, conducted between December 28, 2016 and January 6, 2017 are described in the following subsections. The narrative for the discussion is presented based on review of the historical data described in the reports identified in *Section 4* and the premise that earthwork activities

and disturbance to the subsurface will occur in the future as part of Site redevelopment activities. Therefore, we provide analysis in the context of all of the available information and not exclusively the data collected during the 2017 field event. The analytical data for samples collected during the 2017 investigations are summarized in *Tables 3 through 5*. Copies of the laboratory analytical reports are provided in *Appendix C*.

6.1 GPR Survey Results

Results from the November 9, 2017 GPR survey conducted by Underground Surveying, LLC did not indicate any anomalies existing USTs currently in place at the Site.

6.2 Polluted Fill

Review of boring logs, historical data, and data from the 2017 investigation indicates that the Site is underlain with fill. The fill contains asphalt fragments, coal fragments, coal ash, crushed rock, and small metal fragments. In some areas, the fill is underlain by native material comprised of fine-to-coarse sand with varying composition of gravel. In other areas the fill extends down to the bedrock. A table of generalized fill thickness and depth to bedrock is provided below.

Location	Approximate Depth to Bottom	Approximate Depth to	
	of Fill from Ground Surface	Bedrock From Ground	
	(ft)	Surface (ft)	
West of Building 81-106	6 – 8	8 – 10	
Former Spar Mill Pond	10 - 12	12 - 13	
Building 81-115	3 - 5	~10	
Building 81-106	2 – 6	2 – 8	
Septic Tank and Leachfield	~2	~ 10	

The fill contains PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)flouranthene, indeno(1,2,3-cd)pyrene), ETPH, and metals (arsenic, lead) at concentrations exceeding the RSR baseline DEC. The source for these constituents of concern is asphalt fragments and coal ash within the fill. Reuse planning for the Site will need to consider remedial options to address the presence of polluted fill.

6.3 Analytical Results for Brook Surface Soil

Five surface soil samples were collected from both the north and south banks of Candlewood Hill Brook. One sample (FOSS-02) was collected at the stormwater outfall with the remaining samples collected at the toe of the slope bank at accessible locations (*Figure 2*). It should be noted that most of the north and south slopes of the brook are comprised of rock, rock fragments, and dense vegetation. There was also evidence of other materials in the northern slope of the brook including metal, asphalt and concrete fragments.

Metals (arsenic, barium, cadmium, chromium, and lead) were detected at concentrations similar to levels in soil samples collected from the upland in the fill. PAHs typically associated with asphalt fragments were detected in each sample submitted for laboratory analysis. The highest concentrations of PAHs detected were reported in samples FOSS-01, FOSS-02, and FOSS-03 collected from the northern bank south of Building 81-106 and the north and south bank at the stormwater outfall. Several PAH concentrations in these samples exceed the RSR baseline direct exposure criteria.

Inspection of the banks of the brook (including the stormwater outfall area) revealed no evidence of staining or stressed vegetation. The brook is a very high flow velocity environment with very little evidence of accumulated sediment in the bottom. Most of the bottom is exposed rock. Since the slopes of the brook are comprised mostly of rock and vegetation, we observed no significant evidence of erosion along the reach adjacent to the Site.

6.4 Identified Release Areas

The investigation activities identified evidence of releases and sources of impact to site soils from fill material and site activities at several RECs. Some of the impacts are co-mingled and superimposed over one another; thus making it difficult to distinguish specific impacts from the various RECs. As a result, the following eight "Release Areas" were defined. The general description and summary of RSR exceedances per Release Area are discussed in the subsections below. Refer to *Figure 2* for the locations of each REC and Release Area. Refer to *Table 1* for a discussion of the conceptual site model and release determination status for each REC.

6.4.1 F&O RA-1

Release Area 1 is comprised of REC-1 and REC-2. REC-1 is a portion of the former Spar Mill Pond area, located along the western portion of the Site and was reportedly filled with various materials (including materials containing potentially hazardous substances) from approximately 1941 to 1975. REC-2 is located in the southwestern portion of the Site where several containers of an experimental joint sealer were reportedly buried.

Overall, historical Site investigations in these areas identified soil impacted with ETPH, PAHs and VOCs at concentrations greater than the DEC and GA PMC in soil between 0-14 feet below grade. Specifically, petroleum impacts greater than RSR criteria were primarily associated with the historical fill/dumped materials used to fill in Spar Mill Pond. Low levels of pesticides were also historically reported in soil, at concentrations below applicable RSR criteria.

As part of the 2017 investigation activities, two soil borings (FOSB-01 and FOSB-02) were advanced within REC-1 and REC-2 and soil samples were collected from 6-7.5' and 10-12', respectively. Both samples were submitted for laboratory analysis of:

- · RCRA 8 Metals
- ETPH
- VOCs

PAHs

Analytical results indicated varying concentrations of metals, including arsenic, barium, chromium and/or lead were reported in each sample below applicable RSR criteria. VOCs, PAHs and ETPH were not detected above laboratory reporting limits in either of the two samples.

Release Area Conclusions

Petroleum impacts from materials to fill the former Spar Mill Pond are present at concentrations exceeding the DEC from approximately 0 to 14 feet below grade. VOCs and Pesticide impacts exceeding the GA PMC were also historically present in soil above the water table.

We recommend additional sampling in this RA focused on intervals that will be disturbed by future development activities to further assess historic data collected by others pertaining to reported soil concentrations exceeding the PMC and reported "tar-like" layers historically identified in REC-2. Fuss & O'Neill's 2017 investigation data did not identify soil concentrations exceeding PMC or tar in the subsurface.

6.4.2 F&O RA-2

Release Area 2 is comprised of REC-6, which included the building repair bays in the western portion of Building 81-106 and the majority of Building 81-115 as well as the gasoline pump island formerly located between the two buildings. The pump island was removed in November 2014.

A petroleum release was identified below the dispenser piping lines at the time the dispensers were removed. Subsequently, in December 2015, petroleum impacted soil was removed from the piping trench along a 40 foot long corridor to a depth of approximately 2 feet below grade. Shallow soil in historical borings (SB-12, SB-19 & SB-32) was impacted with concentrations of PAHs and ETPH exceeding RSR criteria.

One monitoring well, FOMW-02, was advanced in this area as part of the 2017 investigation and a soil sample from the 6-7.5' depth interval was collected and submitted for:

- · RCRA 8 Metals
- ETPH
- VOCs
- PAHs

Analytical results indicated varying concentrations of metals, including arsenic, barium, chromium and lead were reported in the sample below applicable RSR criteria. VOCs, PAHs and ETPH were not detected above laboratory reporting limits.

Release Area Conclusions

While no release was identified from the repair bays to exterior doorways, a shallow petroleum release to soil (0-5 feet below grade) was identified associated with the piping from the USTs to the pumps or surface releases due to overfills and or spills at the dispenser. The remediation performed by DOT in 2015 appears to have been effective at removing the petroleum-impacted soil in the shallow interval of the former pipe trench between 0 to 4 four feet below the ground surface. Formal post remediation groundwater monitoring at this release area has not been performed. Residual petroleum impacts from a release persist at depth below the water table as further described in *Section 6.3*. Shallow soil is comingled with asphalt fragments associated with the worn paved parking surface.

6.4.3 F&O RA-3

Release Area 3 is comprised of REC-8 and REC-9, which include three former USTs located in one tank grave off the east side of Building 81-106. These three USTs (a 4,000-gallon diesel UST, 2,000-gallon heating oil UST and a 2,000-gallon gasoline UST) were removed in November 2014 because they had reached the end of their recommended lifespans. During the removal of the diesel UST, the tank broke and approximately 50 gallons of water and residual product released into the tank grave. Approximately 600 gallons of oil and water were pumped from the tank grave. Confirmatory sidewall samples and one grab groundwater sample were collected from the tank grave following the tank and water removal.

One soil boring, FOSB-09, was advanced in the northern portion of the former tank grave as part of Fuss & O'Neill's 2017 investigation and a soil sample was collected from 11.25-11.5 feet below grade. Analytical results indicated that ETPH, PAHs, PCBs and VOCs were not detected above laboratory reporting limits.

Release Area Conclusions

Constituents of concern were not reported above RSR criteria in the confirmatory soil samples collected in the tank grave at the time the USTs were removed or at depth in the former tank grave during the 2017 event. Formal post remediation groundwater monitoring at this release area has not been performed. Residual petroleum impacts may exist in the vicinity of the stormwater line that extends from Building 81-115 through the southwest portion of the former tank grave to the brook (*Figure 2*). The trench holding the stormwater pipe could serve as a preferential migration pathway and may have retained oil released during the 2014 UST removal. Petroleum impacted soil could be encountered during modifications or complete removal of the stormwater line during reuse construction activities, particularly any activities that occur in the utility trench located east of Building 81-106.

6.4.4 F&O RA-4

Release Area 4 consists of REC-10 which are the former heating oil and diesel USTs formerly located in a paved area immediately west of Building 81-115. While no documentation of tank removal activities have been identified to date, results of the November 2017 GPR survey did not identify evidence of underground tanks in place at this location.

Historical soil borings north and south of the former USTs had concentrations of ETPH and PAHs in shallow soil (0-4 feet below grade) exceeding the DEC and/or PMC, attributable to shallow surficial petroleum releases from UST overfilling, piping or other incidental releases.

Two borings (FOSB-03 and FOSB-16) were advanced in this area during the 2017 investigation and samples were collected from 6-8' and 1-2.5', respectively. Analytical results from samples collected from FOSB-03 and FOSB-16 in 2017 indicated the petroleum impacts did not migrate to depth.

Release Area Conclusions

Historical data indicates that a release of petroleum to the surface soil has occurred within an approximate 20 feet square area at the former tank grave. The surficial release is comingled with polluted fill at the surface that extends beyond the former tank grave footprint comprised of broken asphalt fragments associated with the deteriorated parking surface. Sampling at depth performed in 2017 indicates the surficial petroleum releases has not impacted the subsurface. Depending on the reuse strategy, additional sampling may be required to fully delineate the extent of the petroleum surficial release.

6.4.5 F&O RA-5

Release Area 5 consists of REC-13 which was a 2,000-gallon fuel oil UST formerly located off the northeast corner of Building 81-115 and was used to fuel the building's heating system. This UST was removed in November 2014 and four confirmatory sidewall samples, and one grab groundwater sample were collected from the tank grave.

Release Area Conclusions

Review of historical soil and groundwater samples and analytical results from the confirmatory samples did not identify evidence that a release from this UST had occurred. However, PAHs, VOCs and ETPH were detected above laboratory reporting limits in a grab groundwater sample collected from the tank grave in 2014. Presence of petroleum hydrocarbons in this area below the water table may indicate a release has occurred from the UST feed and return line piping which remains below the boiler and building slab located inside the building.

6.4.6 F&O RA-6

Release Area 6 consists of the former 550-gallon waste oil UST identified as REC-14 on *Table 1*. This UST was formerly located north of the offices and repair bays of Building 81-106 and was removed in November 2014. At the time of tank removal, four confirmatory sidewall samples and one grab groundwater sample were collected from the tank grave. Analytical results indicated that confirmatory sidewall samples had concentrations of PAHs and arsenic reported greater than RSR criteria. Therefore, additional impacted soil was removed in January 2015.

As part of the 2017 investigation activities, one soil boring (FOSB-06) was advanced in this area and a sample was collected from 6.8-7.2 feet below grade. Analytical results indicated that ETPH, PAHs, PCBs and VOCs were not detected above laboratory reporting limits.

Release Area Conclusions

A petroleum release was identified during tank removal activities in 2014 requiring soil remediation, which was implemented January 2015 in the tank grave exterior of the building. Investigation data collected in 2017 from boring FO-SB06 advanced in the former tank grave did not identify evidence of petroleum polluted soil below the water table. Oil staining was observed on concrete slab around the interior waste oil UST fill pipe that still remains inside Building 81-106. Formal post remediation groundwater monitoring at this release area has not been performed.

The former UST is located adjacent to the utility tunnel that extends perpendicular between Building 81-106 and Building 81-115. The subgrade trench for the utility tunnel could serve as a preferential migration pathway that may have been impacted by the petroleum release from the UST. In addition, local soil impacts below the building slab or footing may be present at the UST fill pipe.

6.4.7 F&O RA-7

Release Area 7 includes REC-16, which is the former hydraulic lift area in Building 81-106. Historically, above and in-ground hydraulic vehicle lifts were formerly located in the repair bay located in the center of Building 81-106. An August 1998 DEEP spill report described a release of 70 gallons of hydraulic fluid from the lifts and reportedly a former Site manager indicated contaminated soil was removed when the underground lift was replaced with an above ground lift.

Three soil borings were advanced in this area as part of the 2017 investigation (FOSB-10, FOSB-17 and FOSB-19) and samples were collected from 5.3-6.1, 6.1-7.5' and 5.8-7.1', respectively and submitted for laboratory analysis of:

- RCRA 8 Metals
- ETPH
- PCBs
- VOCs
- PAHs

Release Area Conclusions

Visible evidence of a petroleum release was observed in soil at FOSB-10 and the sample collected from this boring had concentrations of ETPH reported in excess of the DEC and PMC. Total lead also exceeded the DEC in this sample. Concentrations of ETPH also exceeded the DEC and/or PMC in the samples analyzed from FOSB-17 and FOSB-19.

The petroleum release associated with the former hydraulic lifts is located beneath the building slab in the eastern portion of the building comprising an area of at least 400 square feet with impacted soil

located at least two feet above the bedrock, which was encountered at a depth of 8 feet below the building slab. Groundwater samples collected from well MW-06 and HMF-MW-2 within 10 to 40 feet from the release area in 2017 (see *Section 6.3*) did not contain petroleum constituents. Additional characterization is warranted in this RA to determine the full degree and extent of the release area including potentially installing a well(s) inside the building to assess if the release to soil has migrated down into the bedrock aguifer below the building footprint.

6.4.8 F&O RA-8

Release Area 8 includes the building interior concrete floors, identified as REC-17. Evidence of petroleum staining, concrete deterioration from salt and chemicals and rings from drum storage were observed on the floors throughout the Site buildings. During the 2017 Phase II Investigation activities, four concrete chip samples (collected from interior soil borings FSB-10, FOSB-11, FOSB-14 and FOSB-15) were submitted for laboratory analysis of PCBs.

Analytical results indicated that PCBs were not detected above laboratory reporting limits in any of the concrete chip samples analyzed.

Release Area Conclusions

While surficial petroleum releases to the floor surfaces are evident based on the visible staining observed, analytical results from the limited concrete chip samples collected from the stained areas indicate the floors are not impacted with PCBs. It is noted that, based on the intended reuse of the building and the extent to which the concrete slab floors will be disturbed during redevelopment activities, additional characterization of the concrete floors and subsurface below the floors may be warranted.

As noted in this report and the Phase I ESA, former subgrade trench and drainage systems associated with former DOT operations or mill operations exist in both Building 81-115 and Building 81-106. Isolated concrete patched areas and linear patched areas were observed in the floor slab of both buildings indicating past filling of the concrete slab or the subsurface below the slab. During the 2017 investigation nine borings were advanced through the slab to the subsurface at or in the vicinity of observed concrete patching. These data did not indicate evidence of a release, other than polluted fill below the buildings and the petroleum release identified at REC-16 as previously described. However, additional sampling should be implemented to further characterize the subsurface below the buildings at areas that will be disturbed associated with reuse construction including planning for a new floor topping slab or new below slab utility trench.

6.5 Groundwater Sampling Results

On November 22, 2017, thirteen groundwater samples were collected from 11 previously existing monitoring wells (W-25-1S, W-25-1D, W-25-3, D-8, D-17, D-18, D-23, MW-1, HMF-MW-1, HMF-MW-2, and MW-06) and the two newly installed monitoring wells (FOMW-01 and FOMW-02). A grab sample was also collected from the potable water supply well located on the western portion of the

property. A summary of the groundwater analytical results compared to the baseline RSR criteria is provided on *Table 5*. A copy of the groundwater laboratory analytical report is included in *Appendix C*.

Each sample was submitted to Phoenix for laboratory analysis of sodium, chloride, RCRA 8 Metals, VOCs, PAHs, pesticides and/or PCBs.

VOCs, PCBs, Pesticides

Analytical results indicated that VOCs and PCBs were not detected above laboratory reporting limits in any of the groundwater samples analyzed.

The pesticides 4,4-DDE and 4,4-DDT were detected in one of three samples submitted for analysis (*Table 5*). These constituents were detected in the sample collected from MW-F01 at concentrations exceeding RSR baseline criteria. Pesticides have been detected in groundwater samples off-site and previous investigations have concluded an off-site agricultural source.

Sodium and Chloride

Sodium and chloride were detected in all of the groundwater samples submitted for analysis. Eleven of the 14 samples had a sodium concentration that exceeded the drinking water state notification level of 28 mg/l. One sample had a chloride concentration that exceeded the state action level goal of 250 mg/l.

Groundwater Quality In Site Fill

Generally low level concentrations of metals (including barium, chromium, and/or lead) were detected in each of the groundwater samples. Concentrations of lead and chromium reported in the sample collected from FOMW-01, however, exceeded the GWPC. It is noted that elevated turbidity readings were reported in FOMW-01 at the time of sample collection and therefore, a 10-micron field filter was used at the time of sample collection. Based on cumulative review of the Site groundwater data including past sampling events performed by others, the source for the metals is the coal ash within the fill that is present throughout the Site.

Trace concentrations (below applicable RSR criteria) of various PAHs were reported in samples collected from historical monitoring wells D-18, D-23 and MW-1. It is noted that these monitoring wells are located outside Fuss & O'Neill's identified release areas. The source for PAHs at these locations most likely is residual petroleum hydrocarbons within the fill.

Groundwater Quality in Petroleum Release Area Between the Buildings

Concentrations of PAHs detected in monitoring wells FOMW-01 and FOMW-02 screened in the unconsolidated deposits between 3 – 8 feet were reported at levels that exceeded the GWPC and/or SWPC. These wells are located between Building 81-115 and Building 81-106 in the vicinity of the former USTs and dispensers (REC-6, REC-11, REC-14). The magnitude of the petroleum concentrations detected in this area compared to concentrations detected in samples collected outside this area indicate one or more of these RECs as a potential source. Note that petroleum hydrocarbons were not detected in downgradient wells MW-6, HMF-MW-2, and HMF-MW-1 screened in the unconsolidated deposits and shallow weathered bedrock. This single event groundwater snapshot indicates petroleum contamination in the unconsolidated deposits and shallow weathered bedrock has not migrated beyond the area between the buildings. However, as previously discussed, groundwater

impacts in the unconsolidated deposits/shallow weathered bedrock may be present below the eastern portion of Building 81-106 at RA-7 (REC-16).

Potable Supply Well

The water sample collected from the potable supply well was non detect for VOCs, PAHs, and pesticides. Lead was detected at a concentration of 0.004 mg/l below the action level goal of 0.015 mg/l. Sodium (11.4 mg/l) and chloride (41.1 mg/l) were detected at concentrations below the action/notification levels of 28 mg/l and 250 mg/l, respectively. Note these data should be interpreted as screening data only as the well pump was not operable and the water sample was collected at the surface of the water column using a peristaltic pump.

A future task associated with the permitting process required by the CT Department of Public Health (DPH) to permit the well as a public water supply source for a future development will require a long-term pumping test. At the end of the pumping test, a water sample will need to be collected from the bedrock aquifer and analyzed for an extensive list of parameters required by DPH.

6.6 Data Gap Analysis

Groundwater

Monitoring wells were not sampled from each Release Area, due to the inability to locate historical wells or historic wells that no longer provide representative groundwater samples. Installation of additional monitoring wells and implementation of additional rounds of groundwater sampling will need to occur to ultimately make a formal determination of groundwater quality relative to RSR compliance.

A deep bedrock aquifer evaluation was not conducted as part of the 2017 investigation activities. Characterization results of the environmental quality of the overburden aquifer and shallow weathered bedrock aquifer per the wells identified on *Table 1* reveal no evidence of an ongoing release from the Site RECs. However, as part of regulatory obligations in a formal state voluntary or property transfer law remediation program, the legacy of impacts to the deep bedrock aquifer from past Site releases or releases that may have migrated onto the Site from adjacent off-site sources located in the GA-impaired groundwater area may need to be further evaluated.

Soil

The reuse site design will need to integrate remedial alternatives to the greatest extent feasible to achieve closure objectives in a cost-effective manner. As such additional soil sampling should be performed at areas of the Site including REC 16 and other locations identified on *Table 1*. In addition, soil samples should be collected from areas of the Site that will be heavily disturbed by renovation construction activities that will generate excess soil. This includes areas such as stormwater retention/detention areas, utility corridors, and below grade foundations. Pre-characterization of soil that is generated by site construction activities along with a geotechnical survey of the subsurface will allow for preparation of a soil management plan to enable suitable soil to remain on-site and reduce off-site disposal costs.

Candlewood Hill Brook

The sampling data indicates that the northern slope of the brook adjacent to the site contains polluted fill with concentrations of PAHs that exceed baseline RSR DEC. At least one stormwater outfall from the Site exists in the northern bank and other former outfalls may have existed in the past. We observed no evidence of staining or stressed vegetation indicating a former discharge of petroleum or other potentially hazardous substances from the outfall to the brook has occurred.

The brook is a potentially sensitive receptor proximal to the upland release areas that have been identified. The DEEP's *Site Characterization Guidance Document* indicates that the conceptual site release model should consider potential impacts to sediment from identified releases or eroded polluted soil from a release. During this investigation evaluating the general environmental quality of soil that comprises the bank slope was performed. However, sampling of unconsolidated material (sediment in the brook) is very limited given that the brook is a high velocity flow environmental with bottom and banks comprised mostly of rock. During future remedial planning, discussion with the regulators will need to occur to determine if ecological risk assessment is necessary to fulfill Site closeout obligations.

7 Conclusions and Recommendations

The Site is a 4-acre irregularly-shaped parcel on the south side of Candlewood Hill Road located in a residential zone of Higganum, Connecticut that has been owned by the CT DOT since 1941. Structures currently located on the Site include two two-story brick buildings, an emergency generator shed, and associated paved parking and driveway areas. The remainder of the Site is comprised of gravel, grass or overgrown brush. The Site is currently vacant, but was most recently used by the CT DOT as a vehicle repair and maintenance facility. Historically, the Site was part of the D&H Scovil Hoe Company Mill No. 4, which manufactured farming equipment from approximately 1844 through 1942.

Several iterations of environmental investigations have been conducted at the Site, most recently including a 2017 Phase I ESA (conducted by Fuss & O'Neill) which identified nineteen RECs associated with past Site operations. Concurrently with the Phase I ESA, Fuss & O'Neill conducted a Phase II and Limited Phase III site investigation in 2017. Results from the 2017 investigation activities identified the following eight release areas:

Identified Release Areas (RAs)

RA	Description / REC	Released Constituents	Constituents Detected Above Baseline RSR Criteria (Y/N)
F&O RA-1	Historical Fill/Dump Area (REC-1 & REC-2)	VOCs, PAHs & ETPH	Υ
F&O RA-2	Repair Bays & Pump Island (REC-6)	PAHs & ETPH	Υ
F&O RA-3	Former Diesel, Heating Oil & Gasoline USTs (REC-8 & REC-9)	PAHs, ETPH, Metals	Y
F&O RA-4	Former Heating Oil & Diesel USTs (REC-10)	PAHs & ETPH	Y

F&O RA-5	Former Heating Oil UST (REC-13)	PAHs, VOCs & ETPH	N
F&O RA-6	Waste Oil UST (REC-14)	Metals	N
F&O RA-7	Former Hydraulic Lift Area (REC-16)	ETPH & Lead	Υ
F&O RA-8	Interior Floors (REC-18)	Petroleum	N

Remediation of polluted soil by CT DOT through excavation and off-site disposal has occurred at several of the RECs as a step in the process of achieving formal compliance with the Remediation Standard Regulations. Post remediation groundwater monitoring has not been completed, however, there is no evidence of a continuing ongoing release to the subsurface from the Site RECs.

Review of boring logs, historical data, and data from the 2017 investigation indicates that the Site is underlain with fill with concentrations of polynuclear aromatic hydrocarbons, lead, and arsenic exceeding baseline RSR Direct Exposure Criteria. The fill contains asphalt fragments, coal fragments, coal ash, crushed rock, and small metal fragments. In some areas, the fill is underlain by native material comprised of fine-to-coarse sand with varying composition of gravel. In other areas the fill extends down to the bedrock. Release determinations were inconclusive at REC-3, REC-11, and REC-15 where minor incidental petroleum releases may have occurred from these sources which are co-mingled with polluted fill with concentrations exceeding cleanup criteria.

The most recent 2017 round of groundwater sampling data indicates that groundwater quality between the buildings in the unconsolidated deposits has been impacted by petroleum hydrocarbons at concentrations above RSR baseline criteria. Review of the historic data indicates other areas of the Site, particularly the former Spar Mill Pond area, have had past petroleum hydrocarbon, pesticide, and metals impacts exceeding baseline RSR criteria.

Recommendations

The next step in the process is to prepare a Remedial Action Plan based on a final site design for redevelopment of the property. The site design should integrate remedial options to the greatest extent feasible to cost-effectively achieve compliance with the cleanup regulations. This could include construction of new buildings along with new parking and landscaped areas to prevent human contact with the underlying polluted soil either through the self-implementing options described in the cleanup regulations or DEEP-approved engineered controls. Select areas may require excavation and off-site disposal. Soil management strategies should be incorporated into the site design to minimize the quantity of excess polluted soil that will be generated by development activities. Additional sampling will likely need to be performed to address identified data gaps pertaining to groundwater and soil characterization.

8 References

Connecticut Department of Environmental Protection, 1982, The Atlas of Public Water Supply Sources and Drainage Basins of Connecticut; CTDEP Natural Resources Center.

Connecticut Department of Environmental Protection, 1997, Leachate and Wastewater Discharge Sources for the Connecticut River and Southcentral Coastal Basins; CTDEP Water Management Bureau.

Connecticut Department of Environmental Protection, 2011, Water Quality Standards; CTDEP, Effective February 25. 2011.

Fuss & O'Neill, Inc., Summary of Existing Conditions CT DOT Higganum Maintenance and Repair Facility, 11 Candlewood Hill Road, Higganum, September 2016.

Fuss & O'Neill, Inc., Phase I Environmental Site Assessment, Scovil Hoe Mill, 11 Candlewood Hill Road, Higganum, February 2018.

Rodgers, J., 1985, Bedrock Geological Map of Connecticut; CTDEP, Natural Resources Center, Connecticut Geological and Natural History Survey, in cooperation with the United States Department of the Interior, U.S. Geological Survey.

Stone, J. R., Schafer, J. P., London, E. H. and Thompson, W. B., 1992, Surficial Materials Map of Connecticut; prepared in cooperation with CTDEP, Geological and Natural History Survey.

TRC, Underground Storage Tank Closure, ConnDOT Higganum Repair Garage, 11 Candlewood Hill Road, Higganum, January 7, 2015.

TRC, Underground Storage Tank Closure Report Addendum, ConnDOT Higganum Maintenance & Repair Facility, 11 Candlewood Hill Higganum, March 2, 2016.

United States Geological Survey, 1971, Haddam Quadrangle Connecticut-Middlesex County, 7.5-Minute Series Topographic Map; United States Department of the Interior, U.S. Geological Survey, 1961, Photo revised 1971.

9 Limitations of Work Product

This document was prepared for the sole use of the Town of Haddam, the only intended beneficiary of our work. Those who may use or rely upon the report and the services (hereafter "work product") performed by Fuss & O'Neill, Inc. and/or its subsidiaries or independent professional associates, subconsultants and subcontractors (collectively the "Consultant") expressly accept the work product upon the following specific conditions.

- 1. Consultant represents that it prepared the work product in accordance with the professional and industry standards prevailing at the time such services were rendered.
- 2. The work product may contain information that is time sensitive. The work product was prepared by Consultant subject to the particular scope limitations, budgetary and time constraints and business objectives of the Client which are detailed therein or in the contract between Consultant and Client. Changes in use, tenants, work practices, storage, Federal, state or local laws, rules or regulations may affect the work product.
- 3. The observations described and upon which the work product was based were made under the conditions stated therein. Any conclusions presented in the work product were based solely upon the services described therein, and not on scientific or engineering tasks or procedures beyond the scope of described services.
- 4. In preparing its work product, Consultant may have relied on certain information provided by state and local officials and information and representations made by other parties referenced therein, and on information contained in the files of state and/or local agencies made available at the time of the project. To the extent that such files which may affect the conclusions of the work product are missing, incomplete, inaccurate or not provided, Consultant is not responsible. Although there may have been some degree of overlap in the information provided by these various sources, Consultant did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this project. Consultant assumes no responsibility or liability to discover or determine any defects in such information which could result in failure to identify contamination or other defect in, at or near the site. Unless specifically stated in the work product, Consultant assumes no responsibility or liability for the accuracy of drawings and reports obtained, received or reviewed.
- 5. If the purpose of this project was to assess the physical characteristics of the Site with respect to the presence in the environment of hazardous substances, waste or petroleum and chemical products and wastes as defined in the work product, unless otherwise noted, no specific attempt was made to check the compliance of present or past owners or operators of the Site with Federal, state, or local laws and regulations, environmental or otherwise.

- 6. If water level readings have been made, these observations were made at the times and under the conditions stated in the report. However, it must be noted that fluctuations in water levels may occur due to variations in rainfall, passage of time and other factors and such fluctuations may affect the conclusions and recommendations presented herein.
- 7. Except as noted in the work product, no quantitative laboratory testing was performed as part of the project. Where such analyses have been conducted by an outside laboratory, Consultant has relied upon the data provided, and unless otherwise described in the work product has not conducted an independent evaluation of the reliability of these tests.
- 8. If the conclusions and recommendations contained in the work product are based, in part, upon various types of chemical data, then the conclusions and recommendations are contingent upon the validity of such data. These data (if obtained) have been reviewed and interpretations made by Consultant. If indicated in the work product, some of these data may be preliminary or screening-level data and should be confirmed with quantitative analyses if more specific information is necessary. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time and other factors.
- 9. Chemical analyses may have been performed for specific parameters during the course of this project, as described in the work product. However, it should be noted that additional chemical constituents not included in the analyses conducted for the project may be present in soil, groundwater, surface water, sediments or building materials at the Site.
- 10. Ownership and property interests of all documents, including reports, electronic media, drawings and specifications, prepared or furnished by Consultant pursuant to this project are subject to the terms and conditions specified in the contract between the Consultant and Client, whether or not the project is completed.
- 11. Unless otherwise specifically noted in the work product or a requirement of the contract between the Consultant and Client, any reuse, modification or disbursement of documents to third parties will be at the sole risk of the third party and without liability or legal exposure to Consultant.
- 12. In the event that any questions arise with respect to the scope or meaning of Consultant's work product, immediately contact Consultant for clarification, explanation or to update the work product. In addition, Consultant has the right to verify, at the party's expense, the accuracy of the information contained in the work product, as deemed necessary by Consultant, based upon the passage of time or other material change in conditions since conducting the work.
- 13. Any use of or reliance on the work product shall constitute acceptance of the terms hereof.

Tables

CT DOT Maintenance Facility / Historical Scovil Hoe Mill 11 Candlewood Hill Road Higganum, Connecticut

	Phase I Backo	ground Investigation		Phase II/III Conclusions & RSR Ev	aluation			
Recognized Environmental Condition (REC)	Historic Release Area ID	Description / Conceptual Site Model	Phase II/III Investigations	Release Determination (Based on Results from Previous Investigations)	Soil Exceedance	Res DEC I/C DEC GA PMC	GW Detects & Exceedances	Release Area Conclusions
REC-1 Historical Fill/ Dump Area (Western Portion of Site)	DTC-RA-1 HRP Release Area 1	The filled area, located along the western portion of the Site was formerly a portion of Spar Mill Pond, and was reportedly used as a dumpsite from 1941 to 1975. Historical Site investigations identified metal, asphalt and construction debris including a degraded drum containing herbicides. COCs VOCs ETPH PAHs Pesticides Herbicides	Soil borings (DTC 2006): SB-1 through SB-6 Sediment Samples (DTC 2006): SS-4 & SS-5 (from Candlewood Hill Brook) Historical monitoring wells: W-25-1S, W-25-1D and W-25-4 DTC Monitoring wells (2006): MW-10S and MW-10D Soil borings (F&O 2017): FOSB-02	Soil between 0-14 fbg impacted with ETPH, PAHs, & VOCs (specifically 1,2,4-Trimethylbenzene at MW-10D, 14 fbg). Petroleum impacts in excess of RSR criteria were identified at depths ranging from shallow (0-2 feet below grade) to 10-14 fbg (in MW-10D), likely related to historical fill materials. Trace concentrations of the VOC constituent naphthalene and low level chlorinated pesticides (44DDD and 44DDT) were also reported in soil samples at concentrations below RSR criteria.	124TMB PAHs ETPH Pesticides		ETPH & pesticides were not detected in GW. A trace concentration of naphthalene (a VOC) was detected in MW-10D.	F&O RA – 1 Petroleum impacts from materials used to fill the former Pond are present in soil at concentrations exceeding the DEC from 0 to 14 feet below grade. VOCs and Pesticide impacts exceeding the PMC are also present in soil.
REC-2 Buried Drums of Joint Sealer (Southwestern portion of Site)	DTC-RA-2 HRP Release Area 2	Historically, several containers of an experimental joint sealer were reportedly buried in the southwestern portion of the Site (southeast of the two buildings along Candlewood Hill Brook). COCs VOCs ETPH PAHs	Soil borings (DTC 2006): SB-7 & SB-8 Sediment Samples (DTC 2006): SS-3 Historical monitoring wells: W-25-2, W-25-3, MW-9, D-17 & D-18 Soil borings (F&O 2017): FOSB-01	Soil between 0-8 fbg is impacted with ETPH & PAHs exceeding RSR criteria at SB-7 and SB-8. Low levels of pesticides (44DDT) and the VOC constituent naphthalene were also reported in soil, below RSR criteria. Soil impacts are likely related to historical petroleum-impacted fill materials.	PAHs ETPH Pesticides		Concentrations of Arsenic historically exceeded the SWPC. Elevated concentrations of sodium and trace PAHs were reported in GW (below RSRs) in 2017.	Additional sampling is recommended to confirm presence of and determine extent of the "tar-like" layer that was historically identified, as well as SPLP sampling to assess the PMC issues.

CT DOT Maintenance Facility / Historical Scovil Hoe Mill 11 Candlewood Hill Road Higganum, Connecticut

	Phase I Backo	round Investigation		Phase II/III Conclusions & RSR Ev	valuation			
	<u> </u>					nstituents &	RSR Exceedances	
Recognized Environmental Condition (REC)	Historic Release Area ID	Description / Conceptual Site Model	Phase II/III Investigations	Release Determination (Based on Results from Previous Investigations)	Soil Exceedance	Res DEC I/C DEC GA PMC	GW Detects & Exceedances	Release Area Conclusions
REC-3 Drum Storage Shed	DTC-RA-3 HRP PRA- 3	A storage shed, located southwest of Building 81-106, and the area immediately north of the storage shed were reportedly used for various drum storage. The contents and amount of materials stored within the drums was not reported. COCs VOCs ETPH PAHs Metals	Soil borings (DTC 2006): SB-13 Historical monitoring wells: D-1 & D-19 Soil borings (F&O 2017): FOSB-04	Shallow soil (0-2 fbg) is impacted with ETPH and PAHs exceeding applicable RSR criteria at SB-13 and FOSB-04. Given the fact that the pavement in this area is severely degraded, the source of PAHs and ETPH is likely attributable to asphalt fragments and fill material. Low levels of chlorinated pesticides (44DDT) were also detected in soil at concentrations below RSR criteria.	PAHs ETPH Pesticides		N/A	Inconclusive. While petroleum impacts (exceeding DEC & PMC) are present in shallow soil and could be attributable to degraded asphalt fragments and fill material, additional sampling should be conducted to confirm releases from historical drum storage activities did not occur.
REC-4 Solvent Steam Cleaning Area	DTC-RA-4 HRP PRA- 5	An area located south of the repair bays of the western portion of Building 81-106 was identified as a former steam cleaning area with the potential use of solvent-based cleaners. COCs VOCs	Soil borings (DTC 2006): SB-14 & SB-16 DTC Monitoring wells (2006): MW-7	Chlorinated solvents were not detected above laboratory reporting limits in soil. Shallow soil (0-3 fbg) is impacted with ETPH and PAHs exceeding applicable RSR criteria, attributable to the presence of asphalt-containing fill material. It is noted that shallow refusal was encountered between 2.5-3 feet below grade.	PAHs ETPH		No COCs detected above laboratory reporting limits in GW.	No Release. Soil impacted by asphalt-containing fill materials.
REC-5 Historic Solvent Storage Area	DTC-RA-5 HRP PRA- 6	A large, fenced impoundment area on the southeastern portion of the Site previously used for general storage and historically used for solvent storage. Historic investigations identified VOCs, lead and petroleum hydrocarbons in soil and groundwater exceeding RSR criteria at sampling point D-3 (located in the southeast corner of fenced area). COCs VOCs ETPH PAHs	Historic Soil Boring/grab GW: D-3 Soil borings (DTC 2006): SB-33 & SB-34 Sediment Samples (DTC 2006): SS-1 DTC Monitoring wells (2006): MW-2 Soil borings (F&O 2017): FOSB-08	VOCs were not detected in soil or groundwater investigated between 2006 and 2017. While shallow soil (0-2 fbg) is impacted with ETPH, PAHs and SPLP Lead exceeding applicable RSR criteria, the source is attributable to impacted fill materials containing asphalt fragments.	PAHs ETPH SPLP Lead		Trace concentration (below RSRs) of naphthalene reported in 2006 gw sample from MW-2.	No Release. Soil impacted primarily by non-native fill materials.

CT DOT Maintenance Facility / Historical Scovil Hoe Mill 11 Candlewood Hill Road Higganum, Connecticut

	Phase I Back	ground Investigation	<u> </u>	Phase II/III Conclusions & RSR Ev	aluation			
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<i>y</i> 		The second of th		nstituents &	RSR Exceedances	1
Recognized Environmental Condition (REC)	Historic Release Area ID	Description / Conceptual Site Model	Phase II/III Investigations	Release Determination (Based on Results from Previous Investigations)	Soil Exceedance	Res DEC I/C DEC GA PMC		Release Area Conclusions
REC-6 Repair Bays & Pump Island	DTC-RA-6 HRP PRA- 7	This area encompasses the repair bays in the western portion of Building 81-106, the majority of Building 81-115, and the gasoline pump island between the two buildings. The pump island was removed in November 2014 and a petroleum hydrocarbons release was identified below the dispenser piping lines. In December 2015 petroleum impacted soil was removed from the former pump island piping trench along a 40 feet long corridor to a depth of approximately two feet below the ground surface COCs VOCs ETPH PAHs	Soil borings (DTC 2006): SB-12, SB-19, SB-31 & SB-32 DTC Monitoring wells (2006): MW-4 & MW-5 Soil borings (F&O 2017): FOSB-05 Monitoring wells (F&O 2017): FOMW-01 & FOMW-02	Shallow soil (0-2 fbg) in SB-12, SB-19 & SB-32 is impacted with PAHs exceeding RSR criteria, and soil from 0-5 fbg in MW-4 is impacted with PAHs and ETPH exceeding RSR criteria. A soil sample from FOMW-02 (6-7.5') also had concentrations of metals and select PAHs detected at concentrations below applicable RSR criteria. The source may be related to surficial releases of petroleum from the eastern repair bays of the 1866 building and the western bay of the 1877 building. Impacts could also be attributed to impacted fill material.	PAHs ETPH		Historically, concentrations of lead & arsenic exceeded the GWPC & SWPC in downgradient well MW-4 (potentially due to suspended solids). PAHs, pesticides and/or select metals were detected in 2017 groundwater samples collected from FOMW-01 and FOMW-02 at concentrations that exceeded the GWPC and/or SWPC.	F&O RA-2 No release from repair bays to exterior doorways. Shallow petroleum release to soil (0-5 feet below grade) associated with piping from USTs to pumps; comingled with impacts from fill material (PAHs exceeding DEC). UST piping release remediated during pump removal; however post remediation groundwater monitoring was not conducted.
REC-7 Septic Tank & Leachfield (East of Building 81-115)	DTC-RA-7 HRP PRA- 8	The floor drains in Building 81-115 reportedly discharged directly to the septic tank. Therefore, the soil and groundwater in the area of the septic tank and leachfield could have been impacted by interior releases to the floor drains and from sinks within the Site buildings. COCs VOCs ETPH PAHs Metals	Soil borings (DTC 2006): SB-24 & SB-25 DTC Monitoring wells (2006): MW-1 Soil borings (F&O 2017): FOSB-07	Soil from 0-3 fb in this area is impacted with PAHs exceeding RSR criteria. Low levels of ETPH and the VOC constituent naphthalene were also detected within the shallow soil. These petroleum impacts are associated with fill materials containing asphalt fragments.	VOCs PAHs ETPH		No COCs detected above laboratory reporting limits in GW, with the exception of a trace concentration of chrysene in the 2017 sample collected from MW-1.	No Release. Soil impacted by non-native fill materials.

CT DOT Maintenance Facility / Historical Scovil Hoe Mill 11 Candlewood Hill Road Higganum, Connecticut

	Phase I Backo	round Investigation		Phase II/III Conclusions & RSR Ev	aluation			
	1 Hase I Baoks	- Cana miconganon		Thas II, III denotations a New Ex		nstituents &	RSR Exceedances	
Recognized Environmental Condition (REC)	Historic Release Area ID	Description / Conceptual Site Model	Phase II/III Investigations	Release Determination (Based on Results from Previous Investigations)	Soil Exceedance	Res DEC I/C DEC GA PMC		Release Area Conclusions
REC-8 Diesel Fuel UST	DTC-RA-8 HRP PRA- 9C	A 4,000-gallon diesel fuel UST, 2,000-gallon heating fuel UST and 2,000 gallon gasoline UST were formerly located in one tank grave off the east side of Building 81-106. The diesel and gasoline USTs were used for fueling DOT vehicles, while the heating oil UST was used for the facility's heating systems. The USTs were removed in November 2014 because they reached the end of their	Soil borings (DTC 2006): SB-21, SB-22 & SB-23 Sediment Samples (DTC 2006): SS-2 DTC Monitoring wells (2006): MW-3	Soil from 0-8 fbg is impacted with ETPH, PAHs, total arsenic and/or SPLP lead at concentrations exceeding RSR criteria, likely associated with petroleum releases due to spills, UST overfills, and/or a leaking UST or related piping. Low levels of chlorinated pesticides (44DDT) were also detected in soil at concentrations below RSR criteria.	124TMB PAHs ETPH Arsenic SPLP Lead Pesticides		GW from nearby monitoring wells (MW-3 & MW-4) did not have COCs reported associated with diesel, heating oil or gasoline. Total arsenic exceeding the SWPC was detected	F&O RA-3 Petroleum release was identified during
REC-9 Heating Oil & Gasoline USTs	DTC-RA-9 HRP PRA-9D	recommended lifespans. During the removal of the diesel UST, the tank broke and approximately 50 gallons of water and residual product released into the tank grave (Spill Case No. 2014-05891). Approximately 600 gallons of oil/water was pumped from the tank grave. 8 confirmatory sidewall samples and one grab groundwater sample were collected following tank removal activities. COCs VOCs ETPH PAHs Metals	TRC Confirmatory Samples (2014): HIG-D-N, HIG-D-E, HIG-D-W, HIG-G-E, HIG-G-W, HIG-FO2-E, HIG-FO2-S TRC Monitoring Well (2015): HMF-MW-1 & HMF-MW-2 Soil borings (F&O 2017): FOSB-09	Additionally, the VOC 124TMB, a gasoline constituent, was detected below RSR criteria in one sample from 6-8 fbg (MW-3). Constituents of concern were not reported above RSR criteria in any of the confirmatory soil samples collected during tank removal activities.			in MW-3 (potentially due to suspended solids). The grab gw sample (HIG-GDF-GW) collected during tank removal activities had concentrations of PAHs and Pb > the GWPC.	2014 tank removal. Bottom confirmatory samples were not collected from the tank grave following tank removal. While groundwater in the area does not appear to be significantly impacted, post remediation groundwater monitoring was not performed.
REC-10 Former Heating Oil & Diesel USTs	DTC-RA-10 HRP PRA- 10A	A heating oil and diesel UST were formerly located in a paved area located immediately west of Building 81-115, outside the garage. No documentation of the removal of these USTs has been identified, however a ground penetrating radar survey conducted in 2017 did not identify anomalies that would be indicative of USTs in place at this location. COCs VOCs ETPH PAHs Metals	Soil borings (DTC 2006): SB-9, SB-10 & SB-11 Soil borings (F&O 2017): FOSB-03, FOSB-16	Soil from 0-4 fbg in historical borings north and south of the former USTs is impacted with ETPH and PAHs exceeding RSR criteria, potentially associated with surficial petroleum releases from UST filling activities, piping, and/or other incidental releases. One deep sample (6-8') was collected from FOSB-03 in 2017. COCs were not detected in this sample at concentrations that would be indicative of a release from the former UST.	PAHs ETPH		GW from nearby historical monitoring well MW-8 did not contain COCs associated with heating or diesel fuel.	F&O RA-4 Limited surface release from UST overfills/spills impacted shallow soil with concentrations greater than DEC & PMC. Based on 2017 investigation, impacts did not migrate to depth. Additional sampling is required to fully delineate surface release.

CT DOT Maintenance Facility / Historical Scovil Hoe Mill 11 Candlewood Hill Road Higganum, Connecticut

	Phase I Backo	ground Investigation		Phase II/III Conclusions & RSR Ev	valuation			
Recognized Environmental Condition (REC)	Historic Release Area ID	Description / Conceptual Site Model	Phase II/III Investigations	Release Determination (Based on Results from Previous Investigations)	Soil Exceedance	Res DEC I/C DEC GA PMC	GW Detects & Exceedances	Release Area Conclusions
REC-11 4 Former USTs	DTC-RA-11 HRP PRA- 10B	Four former USTs, including 2 gasoline and 2 waste oil USTs, were historically located in an area between the two Site buildings. No documentation of the removal of these USTs has been identified, however a ground penetrating radar survey conducted in 2017 did not identify anomalies that would be indicative of USTs in place at this location. COCs VOCs ETPH PAHs Metals	Soil borings (DTC 2006): SB-26, SB-27, SB-28, SB-29 & SB-30 DTC Monitoring wells (2006): MW-5 (downgradient) Monitoring wells (F&O 2017): FOMW-01 (upgradient)	Soil from 0-3 fbg in this area is impacted with PAHs exceeding RSR criteria. Low levels of ETPH, Metals and pesticides were identified at concentrations below RSR criteria.	PAHs ETPH Pesticides		Historically, downgradient monitoring well MW-5 did not contain COCs associated with gasoline or waste oil. PAHs, pesticides, chromium & lead were detected in a 2017 groundwater sample (FOMW-01) at concentrations that exceeded the GWPC and/or SWPC.	Inconclusive. Shallow soil impacts are present which could be attributable to fill material containing degraded asphalt fragments or incidental parking lot releases. Samples from depths representative of USTs were not impacted; although it is noted that shallow refusal (4' below grade) was encountered.
REC-12 Former Heating Oil UST	DTC-RA-12 HRP PRA- 10C	A former heating oil UST was located south of the office of Building 81-106. COCs VOCs ETPH PAHs Metals	Soil borings (DTC 2006): SB-17 & SB-18 DTC Monitoring wells (2006): MW-6 (bedrock)	Shallow refusal encountered between 2-3 fbg. Soil from 0-3 fbg in this area is impacted with PAHs exceeding RSR criteria attributable to asphalt containing fill materials. Low levels of ETPH, Metals and naphthalene were identified at concentrations below RSR criteria.	PAHs		No COCs detected above laboratory reporting limits in GW.	No Release. Soil impacted by non-native fill materials.

CT DOT Maintenance Facility / Historical Scovil Hoe Mill 11 Candlewood Hill Road Higganum, Connecticut

	Phase I Backo	ground Investigation		Phase II/III Conclusions & RSR Ev	valuation			
						nstituents &	RSR Exceedances	
Recognized Environmental Condition (REC)	Historic Release Area ID	Description / Conceptual Site Model	Phase II/III Investigations	Release Determination (Based on Results from Previous Investigations)	Soil Exceedance	Res DEC I/C DEC GA PMC	GW Detects & Exceedances	Release Area Conclusions
REC-13 Former Heating Oil UST (Northeast corner of Building 81-115)	HRP-PRA-9A	A 2,000-gallon fuel oil UST was formerly located off the northeast corner of Building 81-115 which was used to fuel the building's heating system. A historical monitoring well is located in the vicinity of this former UST, and DTC advanced one soil boring (SB-20) upgradient of the former UST location, however no downgradient sampling locations were advanced. This UST was removed in November 2014 because it had reached the end of its recommended lifespan. TRC collected 4 confirmatory sidewall samples and one grab groundwater sample from the excavation following tank removal activities. COCs ETPH PAHs Metals	DTC Soil borings (2006): SB-20 Historical Monitoring well: D-8 TRC Confirmatory Samples (2014): HIG-FO1-N, HIG-FO1-E, HIG-FO1-S, HIG-FO1-W TRC Monitoring Well (2015): HMF-MW-4	COCs were not detected above laboratory reporting limits in the historical soil samples or in any of the UST closure confirmatory soil samples.	None	None	COCs were not detected in groundwater from the historical monitoring well. The VOC constituent ethylbenzene was detected at a concentration below applicable RSR criteria in the grab gw sample from the tank grave. PAHs and ETPH were reported at concentrations above the GWPC in the grab gw sample.	F&O RA-5 Although no apparent release to soil, constituents reported it is noted that bottom confirmatory samples were not collected following UST removal. Additionally, the grab gw sample collected during UST removal indicated the presence of PAHs, VOCs and ETPH. The potential exists that groundwater impacts could be associated with a release from the feed and return line piping that still exists below the boiler and building slab or an off-site upgradient source.
REC-14 Waste Oil UST	HRP-PRA-9B	A former 550-gallon waste oil UST was located north of the offices and repair bays of Building 81-106. This UST was removed in November 2014 and TRC collected 4 confirmatory sidewall samples and one grab groundwater sample from the excavation following tank removal activities. Due to concentrations of PAHs & arsenic in sidewall samples at concentrations greater than RSR criteria, impacted soil was removed from the tank grave in January 2015. COCs ETPH PAHs Metals PCBs	DTC Monitoring wells (2006): MW-5 TRC Confirmatory Samples (2014): HIG-WO-N, HIG-WO-E, HIG-WO-W, HIG-WO-S, HIG-WO-GW TRC Confirmatory Samples (2015): HIG-WO-E2, HIG-WO-W2, HIG-WO-S2 TRC Monitoring Well (2015): HMF-MW-3 Soil borings (F&O 2017): FOSB-06	Low levels of several RCRA 8 metals were identified in historical soil samples from 6-8 fbg at concentrations consistent with naturally occurring background concentrations. VOCs, ETPH, PAHs and PCBs were not detected in historical soil samples. PAHs and arsenic were either not detected or were detected at concentrations below RSR criteria in the 2015 confirmatory sidewall samples following impacted soil removal	RCRA 8 Metals		COCs were not detected in historical groundwater samples from MW-5. PAHs were reported in the groundwater sample from HMG-MW-3 at concentrations below RSR criteria. It is noted that DEEP's Alternative Criteria for phenanthrene was approved for use at this Site.	F&O RA-6 A release was identified during tank removal activities in 2014 and remediation (via impacted soil removal) was conducted in January 2015. Post remediation groundwater monitoring was not conducted, however. Additionally, based on severe concrete staining observed in the vicinity of the fill pipe in the building interior, the release may extend beneath the building slab.

CT DOT Maintenance Facility / Historical Scovil Hoe Mill 11 Candlewood Hill Road Higganum, Connecticut

	Dhasa I Backa	ground Investigation	<u> </u>	Phase II/III Conclusions & RSR Ev			
	Filase i Dacký	Tourid Trivestigation		Filase 11/111 Colliciusions & RSR EV		onstituents & RSR Exceedances	
Recognized Environmental Condition (REC)	Historic Release Area ID	Description / Conceptual Site Model	Phase II/III Investigations	Release Determination (Based on Results from Previous Investigations)	Soil Exceedance Soil Soil		Release Area Conclusions
REC-15 Interior Trenches	AOC 2 (Marin)	Evidence of underground trenches running from east to west in the western portion of Building 81-106 was observed. Several floor drains were also mentioned in Marin's 2001 Phase I ESA, which were capped prior to the completion of the report. Three soil borings were completed in 2017 in the vicinity of the trenches. COCs PAHs Metals ETPH PCBs VOCs	Soil borings (F&O 2017): FOSB-11, FOSB-12, FOSB-13	Varying concentrations of metals were reported in shallow soil (0-2 fbg). Concentrations of arsenic exceeded the Res DEC in a sample from FOSB-13, while PAHs were reported detected below RSR criteria.	As PAHs	N/A	Inconclusive. No release was identified based on the limited sampling conducted to date, which was restricted due to the fact that the trenches have been filled with concrete. It is noted that the trench system was in place and in use prior to Site operation by the CT DOT and additional characterization is warranted based on the intended reuse of the building and the extent to which the slab will be disturbed during redevelopment activities.
REC-16 Former Hydraulic Lift Area	AOC 3 (HRP)	Above- and below-ground hydraulic lifts were formerly located in the repair bay located in the center of Building 81-106. A DEEP Spill report dated 8/14/1998 describes a release of 70 gallons of hydraulic fluid from the lifts and a former Site manager stated that contaminated soil was removed from the area when the underground lift were replaced with the above-ground lift. COCs PAHs Metals ETPH PCBs VOCs	Soil borings (F&O 2017): FOSB-10, FOSB-17, FOSB-19	Visible evidence of a release was observed in soil at FOSB-10. Soil at 5-7 fbg was impacted with concentrations of ETPH greater than the RSRs. Concentrations of total lead also exceeded the Res DEC at FOSB-10.	ETPH Lead	N/A	F&O RA-7 A petroleum release to soil was identified beneath the building slab, associated with the hydraulic lifts formerly located in this portion of the building. Additional characterization is warranted to determine the full degree and extent of the release area.
REC-17 Interior Concrete Floors	N/A	Evidence of petroleum staining, concrete deterioration from salt and chemicals, and rings from drum storage is visible on interior floors throughout the Site buildings. Several interior concrete chip samples were collected to determine if PCBs are present on the concrete slab floors. COCs PCBs	Concrete chip samples (F&O 2017): FOSB-10, FOSB-11, FOSB-14, and FOSB-15	Four concrete chip samples were analyzed for PCBs. PCBs were not detected above laboratory reporting limits in any of the samples.	-	- N/A	F&O RA-8 A petroleum release to floor surfaces is evident based on visible staining observed, however analytical results indicate no PCBs are present based on the limited concrete chip sampling conducted to date. It is noted that additional characterization is warranted based on the intended reuse of the building and the extent to which the slab will be disturbed during redevelopment activities.

CT DOT Maintenance Facility / Historical Scovil Hoe Mill 11 Candlewood Hill Road Higganum, Connecticut

	Phase I Backo	ground Investigation	<u> </u>	Phase II/III Conclusions & RSR Ev				
	T TIGGE T EGENÇ			Thase III III Soliciasions & NSIX E		nstituents &	RSR Exceedances	
Recognized Environmental Condition (REC)	Historic Release Area ID	Description / Conceptual Site Model	Phase II/III Investigations	Release Determination (Based on Results from Previous Investigations)	Soil Exceedance	Res DEC I/C DEC GA PMC	GW Detects &	Release Area Conclusions
REC-18 Potential Solvent Release Area	HRP-PRA-4	The April 2002 ECAF identified a potential solvent release area located outside the repair bays of the eastern half of Building 81-106. COCs VOCs	DTC Monitoring wells (2006): MW-8	VOCs were not detected in soil with the exception of trace concentrations of naphthalene in samples collected from 0-2 and 4-6 fbg.	Naph		VOCs were not detected above laboratory reporting limits in MW-8.	No Release. Soil impacted by non-native fill materials.
REC-19 Former Salt Storage Activities	N/A	The Site historically was used as a salt storage facility from 1941 through 1973; however the exact location of the salt storage area is unknown. Based on aerial photographs, the storage location was most likely in the area of the former Spar Mill Pond. Historical data obtained from Metcalf & Eddy in 1986 indicated the presence of elevated sodium and chloride concentration in certain on-site monitoring wells. COCs Sodium Chloride	DTC Investigation (2006): 18 Groundwater samples	N/A	N/A	N/A	Historically, varying concentrations of sodium and chloride were detected in each of the 18 groundwater samples. Highest concentrations were reported in MW-8 (located west of the southern maintenance building) with chloride slightly exceeding the DPH MCL.	Historical Release to Groundwater.
	1		Oth	er Considerations	<u> </u>		1	
On-Site Supply Well	N/A	A water supply well, located near the northwest corner of the Site, currently provides the Site with potable water. DTC collected a sample from an interior sink located in the northern repair garage in 2006 and F&O collected a grab sample during the 2017 investigation. COCs VOCs PCBs PAHs Metals ETPH Pesticides & Herbicides	DTC Investigation (2006): One Potable Water sample F&O Investigation (2017): One potable water sample	N/A	N/A	N/A	Historically, trace sodium, chloride & barium were detected below criteria. COCs were not detected in the 2017 grab sample, although the pump was not operational.	No Apparent release; but pumping from the deeper aquifer was not possible at the time the 2017 grab sample was collected.

CT DOT Maintenance Facility / Historical Scovil Hoe Mill 11 Candlewood Hill Road Higganum, Connecticut

	Phase I Back	ground Investigation		Phase II/III Conclusions & RSR Ev	aluation			
Recognized Environmental Condition (REC)	Historic Release Area ID	Description / Conceptual Site Model	Phase II/III Investigations	Release Determination (Based on Results from Previous Investigations)		Res DEC I/C DEC GA PMC	GW Detects & Exceedances	Release Area Conclusions
Out-of-Use Supply Well	N/A	A second supply well was identified just north of the southern building. Due to inaccessibility, no sample could be collected from this well. COCs VOCs PCBs PAHs Metals ETPH Pesticides & Herbicides	N/A	N/A	N/A	N/A	Low level concentrations of sodium, chloride and barium were detected below applicable criteria.	No Release. This well remains to be a potential contaminant pathway however and should be abandoned in accordance with State regulations.
Surface Soil Samples	N/A	Various surface soil samples were collected from the outfall that exists beneath southeast corner of building 81-106, the suspected outfall from the drainage ditch beneath center of Building 81-106, and from the southern bank of Candlewood Brook. The purpose of these samples was to evaluate potential impacts from the Site to the brook sediment. COCs Metals ETPH PAHs	Surface samples (F&O 2017): FOSS-01 through FOSS-05	Varying concentrations of metals were reported in each of the surficial soils samples (0-0.5 fbg) at levels that were below applicable RSR criteria. Concentrations of PAHs and/or ETPH exceeded the Res DEC and/or PMC in three of the five samples, attributable to sitewide fill material.	PAHs ETPH Metals		N/A	No Release. Soil impacted by non-native fill materials

Notes:

RA = Release Area

PRA = Potential Release Area

UST = Underground Storage Tank
DEC = Direct Exposure Criteria
PMC = Pollutant Mobility Criteria

DPH = Department of Public Health MCL = Maximum Contaminant Level

Constituents of Concern:

VOCs = Volatile Organic Compounds ETPH = Extractable Total Petroleum Hydrocarbons PAHs = Polycyclic Aromatic Hydrocarbons PCBs = Polychlorinated Biphenyls RCRA 8 Metals = Arsenic, Barium, Cadmium, Chromium, Lead, Mercury, Selenium, Silver

Table 2 Monitoring Well Construction and Groundwater Gauging Data

Former Scovil Hoe Mill 11 Candlewood Hill Road Higganum, Connecticut

MW ID	Installer	Installation Date	Installation Depth	Screened	Screened		rical Data		/2017
	motanoi	Thotaliation Date	(per Log)	Interval	Formation	DTB (PVC) E	Elevation (PVC)	DTB (PVC)	DTW (PVC)
MW-1	DTC	UNK	14.00	4-14	W BR	12.95	99.7	12.92	4.95
HMF-MW-1	DTC	6/19/2006	UNK	UNK	UNK	UNK	UNK	NM	4.71
HMF-MW-2	DTC	6/19/2006	UNK	UNK	UNK	UNK	UNK	14.00	5.64
MW-6	DTC	6/20/2006	15.00	5-15	OB/W BR	13.9	102.89	14.11	6.77
MW-7	DTC	6/20/2006	13.00	3-13	W BR	12.53	103.77	11.70	4.84
D-8	M&E	UNK	UNK	UNK	UNK	27.05	UNK	27.50	14.49
D-17	M&E	UNK	UNK	UNK	UNK	35.36	UNK	36.00	12.62
D-18	M&E	UNK	UNK	UNK	UNK	51.47	UNK	15.75	12.26
D-23	M&E	UNK	UNK	UNK	UNK	UNK	UNK	NM	8.10
W-25-1S	M&E	UNK	UNK	UNK	UNK	14	124.46	17.70	12.59
W-25-1D	M&E	UNK	UNK	UNK	UNK	33.6	124.46	36.10	12.72
W-25-3	M&E	UNK	UNK	UNK	UNK	16	115.03	NM	12.28
FOMW-01	F&O	11/15/2017	8.00	3-8	OB (Top of Rock)	N/A	N/A	7.39	1.81
FOMW-02	F&O	11/15/2017	8.00	3-8	OB (Top of Rock)	N/A	N/A	7.41	4.68

Notes:

UNK - Unknown

W BR - Weathered Bedrock

OB/W BR - Overburden / Weathered Bedrock

OB - Overburden

NM - Not measured

Table 3A Summary of Soil Analytical Results

Former Scovil Hoe Mill 11 Candlewood Hill Road Higganum, Connecticut

		Sample Loc	etion FO	MW-01	FOMW-02	FOSB-01	FOSB-02	FOSB-03	FOSB-04	FOSB-05	FOSB-06	FOSB-07	FOSB-08	FOSB-09	FOSB-10	FOSB-11	FOSB-12	FOSB-13	FOSB-14	FOSB-15 ^{DUP}	FOSB-16	FOSB-17	FOSB-19	FOSB-18
		Sample Depth	41.011	0.5-2'	6-7.5'	6-7.5'	10-12'	6-8'	1-2.4'	1-2.5'	6.8-7.2'	2-3'	0.5-1.5'	11.25-11.5'	5.3-6.1'	5.5-7'	0.5-1.5'	0.8-1.75'	1.5-2.5'	1-2.5'	1-2.5'	6.1-7.5'	5.8-7.1'	5.5-7.2'
		Sample	` '	15/2017	11/15/2017	11/15/2017	11/15/2017	11/15/2017	11/15/2017	11/15/2017	11/15/2017	11/15/2017	11/15/2017	11/15/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017
		Sample Nu		171115-05	1305171115-08	1305171115-01	1305171115-02	1305171115-03	1305171115-04	1305171115-06	1305171115-07	1305171115-09	1305171115-10	1305171115-11	1305171116-17	1305171116-19	1305171116-20	1305171116-21	1305171116-23	1305171116-25	1305171116-27	1305171116-28	1305171116-29	1305171116-30
		Phoenix La		Z42540	BZ42543	BZ42536	BZ42537	BZ42538	BZ42539	BZ42541	BZ42542	BZ42544	BZ42545	BZ42546	BZ43551	BZ43553	BZ43554	BZ43555	BZ43557	BZ43559	BZ43561	BZ43562	BZ43563	BZ43564
		T HOUSEN LO	5.5	_ 120 10	DZ 12010	52 12000	52 12007	DZ 12000	52 12007	52 12011	DZ 12012	52 12011	52 120 10	DZ 12010	52 10001	52 10000	52 1000 1	52 10000	B2 10007	52 10007	BE 10001	DZ 1000Z	52 10000	52 10001
Parameters		CT DEEP RSRs																						
	GA PMC	Res DEC I/C E	DEC																					
Metals, Total (mg/kg) Arsenic	N/A	10 10		2.48	1.21	0.74	< 0.74	< 0.66	2.36	6.29	1.18	< 0.80	7.89	< 0.70	9.19	3.21	0.94	10.2	< 0.82	1.24	0.8	< 0.66	< 0.65	1.01
Barium	N/A	4.700 140.0		79.6	56.9	52	10.7	25.6	25.5	61.1	69.7	15.8	72.4	21.2	367	30.1	23.9	52.4	15.4	39.6	22.2	17.8	21.1	32.8
Cadmium	N/A	34 1.00		0.47	0.43	< 0.36	< 0.37	< 0.33	0.38	< 0.36	< 0.37	0.71	7.95	< 0.35	1.98	0.56	< 0.41	4.67	< 0.41	0.67	< 0.39	0.5	< 0.33	0.43
Chromium	N/A	NE NE		14.8	8.78	< 0.36 16.6	4.58	< 0.33 8.1	19.5	< 0.36 16	4.26	10.2	35.8	2.03	28.2	19.3	8.63	14.8	7.75	18.5	9.86	11.9	< 0.33 10.4	10.3
Lead	N/A	400 1,00		3.82	12.3	1.72	4.59	1.01	26.6	3.04	< 0.37	< 0.40	80.6	< 0.35	498	0.95	3.27	129	0.82	4.77	2.05	3.32	0.78	7.22
	N/A	20 61		< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.40	0.04	< 0.03	< 0.03	< 0.03	< 0.03	0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Mercury Selenium	N/A	340 10,0		< 1.4	< 1.5	< 0.03	< 1.5	< 1.3	< 1.4	< 1.5	< 1.5	< 1.6	< 1.5	< 1.4	< 1.5	< 1.3	< 1.6	< 1.4	< 1.6	< 1.3	< 1.6	< 1.3	< 1.3	< 1.4
Silver	N/A	340 10,0		< 1.4 < 0.36	< 0.37	< 0.36	< 0.37	< 0.33	< 0.34	< 0.36	< 0.37	< 0.40	< 0.38	< 0.35	< 0.37	< 0.32	< 0.41	< 0.36	< 0.41	< 0.32	< 0.39	< 0.33	< 0.33	< 0.35
Silvei	IN/A	340 10,0	· · · · · · · · · · · · · · · · · · ·	. 0.30	< 0.37	< 0.30	< 0.37	< 0.55	< 0.54	< 0.30	< 0.37	< 0.40	< 0.30	< 0.50	< 0.37	< 0.32	< 0.41	< 0.50	< 0.41	< 0.32	< 0.39	< 0.55	< 0.33	< 0.55
ETPH (mg/kg)																								
Ext. Petroleum H.C. (C9-C36)	500	500 2,50	00 -	< 53	< 55	< 55	< 57	< 53	310	< 53	< 61	< 63	260	< 55	30,000	< 52	< 56	< 54	< 58	< 54	< 56	9,500	1,800	< 53
PCBs (mg/kg)																								
Total PCBs	0.0005**	1 10									< 0.41	< 0.43		< 0.36	< 0.40	< 0.35	< 0.38	< 0.36	< 0.38	< 0.36		< 0.34	< 0.36	
100011 003	0.0000										1 0.11	4 0.10		1 0.00	10.10	1 0.00	1 0.00	1 0.00	. 0.00	1 0.00		1 0.0 1	4 0.00	
VOCs (ug/kg)																								
Carbon Disulfide	800	500,000 1,000	,000	< 5.4	< 280	< 4.4	< 5.6	< 4.2	< 4.8	< 5.1	< 5.1	< 6.0	< 5.7	< 4.8	< 5.7	< 4.8	< 4.3	< 6.6	< 5.0	< 4.8	< 5.3	< 4.7	< 5.0	8
Ethylbenzene	10,100	500,000 1,000	,000	< 5.4	< 280	< 4.4	< 5.6	< 4.2	< 4.8	< 5.1	< 5.1	< 6.0	< 5.7	< 4.8	8.4	< 4.8	< 4.3	< 6.6	< 5.0	< 4.8	< 5.3	< 4.7	< 5.0	< 5.2
m&p-Xylene	NE	NE N		< 5.4	< 280	< 4.4	< 5.6	< 4.2	< 4.8	< 5.1	< 5.1	< 6.0	< 5.7	< 4.8	17	< 4.8	< 4.3	< 6.6	< 5.0	< 4.8	< 5.3	< 4.7	< 5.0	< 5.2
Naphthalene	5,600	1,000,000 2,500		< 250	< 280	< 4.4	< 5.6	< 4.2	< 4.8	< 5.1	< 5.1	< 6.0	< 5.7	< 4.8	180	< 4.8	< 390	< 6.6	< 5.0	< 320	< 5.3	< 280	< 210	< 5.2
o-Xylene	NE	NE N		< 5.4	< 280	< 4.4	< 5.6	< 4.2	< 4.8	< 5.1	< 5.1	< 6.0	< 5.7	< 4.8	14	< 4.8	< 4.3	< 6.6	< 5.0	< 4.8	< 5.3	< 4.7	< 5.0	< 5.2
Total Xylenes	19,500	500,000 1,000	.000	< 5.4	< 280	< 4.4	< 5.6	< 4.2	< 4.8	< 5.1	< 5.1	< 6.0	< 5.7	< 4.8	31	< 4.8	< 4.3	< 6.6	< 5.0	< 4.8	< 5.3	< 4.7	< 5.0	< 5.2
PAHs (ug/kg)																								
2-Methylnaphthalene	560	270,000 1,000	000 <	< 140	< 150	< 150	< 150	< 150	< 140	< 140	< 160	< 170	< 150	< 140	< 160	< 140	< 150	< 150	< 150	< 140	< 150	< 130	< 150	< 140
Acenaphthene	8,400	1,000,000 2,500	000 <	< 140	< 150	< 150	< 150	< 150	< 140	< 140	< 160	< 170	< 150	< 140	170	< 140	< 150	< 150	< 150	< 140	< 150	< 130	< 150	< 140
Acenaphthylene	8,400	1,000,000 2,500	000 <	< 140	< 150	< 150	< 150	< 150	2,500	< 140	< 160	< 170	< 150	< 140	< 160	< 140	< 150	< 150	< 150	< 140	< 150	< 130	< 150	< 140
Anthracene	40,000	1,000,000 2,500	000 <	< 140	< 150	< 150	< 150	< 150	880	< 140	< 160	< 170	< 150	< 140	220	< 140	< 150	< 150	< 150	< 140	< 150	< 130	< 150	< 140
Benz(a)anthracene	1,000	1,000 7,80	00 <	< 140	< 150	< 150	< 150	< 150	2,100	< 140	< 160	< 170	210	< 140	390	< 140	< 150	170	< 150	150	< 150	< 130	< 150	< 140
Benzo(a)pyrene	1,000	1,000 1,00	00 <	< 140	< 150	< 150	< 150	< 150	4,800	< 140	< 160	< 170	300	< 140	380	< 140	< 150	< 150	< 150	150	< 150	< 130	< 150	< 140
Benzo(b)fluoranthene	1,000	1,000 7,80	00 <	< 140	< 150	< 150	< 150	< 150	3,900	< 140	< 160	< 170	310	< 140	330	< 140	< 150	150	< 150	160	< 150	< 130	< 150	< 140
Benzo(ghi)perylene	1,000	8,400 78,0	00	340	< 150	< 150	< 150	< 150	4,100	< 140	< 160	< 170	430	< 140	370	< 140	< 150	< 150	< 150	< 140	< 150	< 130	< 150	< 140
Benzo(k)fluoranthene	1,000	8,400 78,0	00 <	< 140	< 150	< 150	< 150	< 150	3,200	< 140	< 160	< 170	420	< 140	420	< 140	< 150	160	< 150	170	< 150	< 130	< 150	< 140
Chrysene	1,000	84,000 780,0	000 <	< 140	160	< 150	< 150	< 150	3,000	< 140	< 160	< 170	460	< 140	490	< 140	< 150	230	< 150	250	< 150	< 130	< 150	< 140
Dibenz(a,h)anthracene	1,000	1,000 1,00	00 <	< 140	< 150	< 150	< 150	< 150	890	< 140	< 160	< 170	< 150	< 140	< 160	< 140	< 150	< 150	< 150	< 140	< 150	< 130	< 150	< 140
Fluoranthene	5,600	1,000,000 2,500	000 <	< 140	180	< 150	< 150	< 150	2,100	< 140	< 160	< 170	590	< 140	830	< 140	< 150	320	< 150	410	< 150	< 130	< 150	< 140
Fluorene	5,600	1,000,000 2,500	000 <	< 140	< 150	< 150	< 150	< 150	< 140	< 140	< 160	< 170	< 150	< 140	510	< 140	< 150	< 150	< 150	< 140	< 150	< 130	< 150	< 140
Indeno(1,2,3-cd)pyrene	1,000	1,000 7,80	00	260	< 150	< 150	< 150	< 150	4,800	< 140	< 160	< 170	450	< 140	350	< 140	< 150	< 150	< 150	< 140	< 150	< 130	< 150	< 140
Naphthalene	5,600	1,000,000 2,500	000 <	< 140	< 150	< 150	< 150	< 150	170	< 140	< 160	< 170	< 150	< 140	< 160	< 140	< 150	< 150	< 150	< 140	< 150	< 130	< 150	< 140
Phenanthrene	4,000	1,000,000 2,500	000 <	< 140	< 150	< 150	< 150	< 150	410	< 140	< 160	< 170	370	< 140	930	< 140	< 150	150	< 150	320	< 150	< 130	< 150	< 140
Pyrene	4,000	1,000,000 2,500	000 <	< 140	240	< 150	< 150	< 150	2,800	< 140	< 160	< 170	560	< 140	1,700	< 140	< 150	330	< 150	420	< 150	< 130	< 150	< 140

<u>Notes:</u> Bold indicates a detection

Bold and highlighted cells indicates an exceedance of one or more of the listed criteria

Res DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

GA PMC - Pollutant Mobility Criteria

Green Text = DEEP fast-track approveable additional polluting substances; DEEP approval required

Green Text = DEEP fast-track approveable additional polluting substances; DEEP approval required N/A - not applicable SB-15^{DUP} - indicates a duplicate sample was collected; the higher results of the two samples was reported mg/kg - milligrams per kilogram mg/L - milligrams per Liter VOCs - Volatile Organic Compounds PAHs - Polynuclear Aromatic Hydrocarbons COPP. Description of the property of

PCBs - Polycyclic Chlorinated Biphenyls
ETPH - Extractable Total Petroleum Hydrocarbons
** Pollutant Mobility Criteria units for PCBs are mg/L

F:\P2016\0476\A20\Phase II ESA\Tables\Table - Soil Analytical Results.xlsx

Page 1 of 1

Table 3B Summary of Surface Soil Analytical Results

Former Scovil Hoe Mill 11 Candlewood Hill Road Higganum, Connecticut

		Sam	ole Location	FOSS-01	FOSS-02	FOSS-03	FOSS-04	FOSS-05
		Sample	Depth (feet)	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'
		. 5	Sample Date	11/14/2017	11/14/2017	11/14/2017	11/14/2017	11/14/2017
		Sam	ple Number	1305171114-01	1305171114-02	1305171114-03	1305171114-04	1305171114-05
		Pho	enix Lab ID	BZ41805	BZ41806	BZ41807	BZ41808	BZ41809
	С	T DEEP RS	SRs					
Parameters	GA PMC	Res DEC	I/C DEC					
Metals, Total (mg/kg)								
Arsenic	N/A	10	10	3.93	2.32	< 0.75	1.8	< 0.76
Barium	N/A	4,700	140,000	71.9	45.3	18.4	27.2	15.1
Cadmium	N/A	34	1,000	0.63	< 0.35	< 0.38	0.54	< 0.38
Chromium	N/A	NE	NE	25.3	17	3.88	5.25	4
Lead	N/A	400	1,000	60.9	28	9.96	32.5	7.65
Mercury	N/A	20	610	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03
Selenium	N/A	340	10,000	< 1.8	< 1.4	< 1.5	< 2.1	< 1.5
Silver	N/A	340	10,000	< 0.44	< 0.35	< 0.38	< 0.52	< 0.38
ETPH (mg/kg)								
Ext. Petroleum H.C. (C9-C36)	500	500	2,500	540	< 290	< 60	110	< 280
PAHs (ug/kg)								
2-Methylnaphthalene	560	270,000	1,000,000	< 180	< 150	< 160	< 380	< 150
Acenaphthene	8,400	1,000,000	2,500,000	< 180	< 150	< 160	< 380	< 150
Acenaphthylene	8,400	1,000,000	2,500,000	600	840	210	< 380	160
Anthracene	40,000	1,000,000	2,500,000	380	680	430	< 380	170
Benz(a)anthracene	1,000	1,000	7,800	1,200	2,600	1,100	< 380	530
Benzo(a)pyrene	1,000	1,000	1,000	1,500	3,100	1,100	< 380	590
Benzo(b)fluoranthene	1,000	1,000	7,800	1,500	2,800	870	< 380	500
Benzo(ghi)perylene	1,000	8,400	78,000	1,100	2,400	830	< 380	450
Benzo(k)fluoranthene	1,000	8,400	78,000	1,200	3,000	1,200	410	580
Chrysene	1,000	84,000	780,000	1,500	3,300	1,400	450	720
Dibenz(a,h)anthracene	1,000	1,000	1,000	190	400	< 160	< 380	< 150
Fluoranthene	5,600	1,000,000	2,500,000	2,600	5,600	2,700	780	1,200
Fluorene	5,600	1,000,000	2,500,000	< 180	230	< 160	< 380	< 150
Indeno(1,2,3-cd)pyrene	1,000	1,000	7,800	1,300	2,800	900	< 380	480
Naphthalene	5,600	1,000,000	2,500,000	< 180	< 150	< 160	< 380	< 150
Phenanthrene	4,000	1,000,000	2,500,000	900	2,400	1,500	390	550
Pyrene	4,000	1,000,000	2,500,000	2,600	5,400	2,500	710	1,200

Notes:

Bold indicates a detection

Bold and highlighted cells indicates an exceedance of one or more of the listed criteria

Res DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

GA PMC - Pollutant Mobility Criteria

Green Text = DEEP fast-track approveable additional polluting substances; DEEP approval required

N/A - not applicable

mg/kg - milligrams per kilogram

mg/L - milligrams per Liter

PAHs - Polynuclear Aromatic Hydrocarbons

ETPH - Extractable Total Petroleum Hydrocarbons

Table 4 Summary of Concrete Chip Analytical Results

Former Scovil Hoe Mill 11 Candlewood Hill Road Higganum, Connecticut

		Samp	le Location	FOSB-10	FOSB-11	FOSB-14	FOSB-15
		Sar	mple Depth	0-0.25'	0-0.25'	0-0.25'	0-0.25'
		S	ample Date	11/16/2017	11/16/2017	11/16/2017	11/16/2017
		Sam	ole Number	1305171116-16	1305171116-18	1305171116-22	1305171116-24
			Phoenix ID	BZ43550	BZ43552	BZ43556	BZ43558
Parameters	CT	T DEEP RS	Rs				
i didiffeters	GA PMC	Res DEC	I/C DEC				
PCBs (ug/kg)							
PCB-1016	0.0005**	1	10	< 0.34	< 0.35	< 0.34	< 0.34
PCB-1221	0.0005**	1	10	< 0.34	< 0.35	< 0.34	< 0.34
PCB-1232	0.0005**	1	10	< 0.34	< 0.35	< 0.34	< 0.34
PCB-1242	0.0005**	1	10	< 0.34	< 0.35	< 0.34	< 0.34
PCB-1248	0.0005**	1	10	< 0.34	< 0.35	< 0.34	< 0.34
PCB-1254	0.0005**	1	10	< 0.34	< 0.35	< 0.34	< 0.34
PCB-1260	0.0005**	1	10	< 0.34	< 0.35	< 0.34	< 0.34
PCB-1262	0.0005**	1	10	< 0.34	< 0.35	< 0.34	< 0.34
PCB-1268	0.0005**	1	10	< 0.34	< 0.35	< 0.34	< 0.34

Notes:

Bold indicates a detection

Bold and highlighted cells indicates an exceedance of one or more of the listed criteria

Res DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

GA PMC - Pollutant Mobility Criteria

mg/kg - milligrams per kilogram

mg/L - milligrams per Liter

PCBs - Polycyclic Chlorinated Biphenyls

** Pollutant Mobility Criteria units for PCBs are mg/L

Table 5 Summary of Groundwater Analytical Results

Former Scovil Hoe Mill 11 Candlewood Hill Road Higganum, Connecticut

		Monito	oring Well ID	W-25-1S	W-25-1D	W-25-3	D-8*	D-17*	D-18*	D-23*	MW-F01*	MW-F02*	MW-1	HMF-MW-1	HMF-MW-2	MW-06*	PW-1*
			Depth (feet)	16	34	16	25	34	13	18	5	6.5	10	12	12	11	
			Sample Date	11/22/2017	11/22/2017	11/22/2017	11/22/2017	11/22/2017	11/22/2017	11/22/2017	11/22/2017	11/22/2017	11/22/2017	11/22/2017	11/22/2017	11/22/2017	11/22/2017
			nple Number oenix Lab ID	1305171122-02 BZ46416	1305171122-04 BZ46418	1305171122-06 BZ46420	1305171122-16 BZ46429	1305171122-10 BZ46424	1305171122-08 BZ46422	1305171122-05 BZ46419	1305171122-11 BZ46425	1305171122-09 BZ46423	1305171122-07 BZ46421	1305171122-14 BZ46428	1305171122-12 BZ46426	1305171122-03 BZ46417	1305171122-13 BZ46427
Parameters	GWPC	CT DEEP RS Res VC		5210110	B2 10110	<i>BE</i> 10 120	BE 10127	DZ 10121	BE 10 122	5210117	<i>BE</i> 10 120	BZ 10 120	DZ 10121	DZ 10 120	BZ 10 120	<i>B</i> 2 10117	DZ 10127
Miscellaneous (mg/L)	GWFC	IVES AC	3000														
Sodium	NE	NE	NE	25.2	9.29	82.8	169	30.5	75.5	97.7	36.7	107	55.1	75.2	84	74.6	11.4
Chloride	NE	NE	[10,000]	40.3	8.5	136	268	57.2	70.9	157	14.4	98.6	80.8	91	73.3	88.9	41.1
Metals, Total (mg/L)																	
Arsenic	0.05	NE	0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Barium	1	NE	[2.2]	0.016	0.009	0.037	0.072	0.015	0.023	0.019	0.146	0.016	0.018	0.01	0.007	0.02	< 0.002
Cadmium	0.005	NE	0.006	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Chromium	0.05	NE	NE	< 0.001	0.001	< 0.001	< 0.001	< 0.001	0.001	< 0.001	0.064	0.004	< 0.001	< 0.001	< 0.001	0.002	< 0.001
Lead	0.015	NE	0.013	< 0.002	0.003	0.004	< 0.002	0.003	< 0.002	0.004	0.054	0.009	0.004	< 0.002	0.005	0.008	0.004
Mercury	0.002	NE	0.0004	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Selenium	0.05	NE	0.05	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Silver	0.036	NE	0.012	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCBs (ug/L)																	
Total PCBs	0.5	NE	0.5						< 0.47			< 0.50	< 0.10	< 0.47			
VOCs (ug/L)																	
Total VOCs	Varies	Varies	Varies	BDL													
PAHs (ug/L)																	
2-Methylnaphthalene	[28]	[1000]	[62]	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.35	0.33	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	[420]	[30500]	[150]	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	420	NE	0.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	2.7	1.8	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	2,000	NE	1,100,000	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.06	0.09	1.1	0.86	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benz(a)anthracene	0.06	NE	0.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1.3	3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	0.2	NE	0.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.06	3.7	4.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	0.08	NE	0.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.07	3.3	4.6	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	[0.48]	NE	[150]	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.06	3.5	3.6	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	0.5	NE	0.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	3.3	3.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	[4.8]	NE	[0.54]	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1.5	3.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	[0.1]	NE NE	[0.30]	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	1.5	1.3	0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	280 280	(37,642)	3,700 140,000	< 0.05 < 0.05	< 0.05	1.6 0.23	4.3 0.28	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05					
Fluorene	[0.1]	{37,642} NE	[0.30]	< 0.05 < 0.05	3.4	3.5	< 0.05 < 0.05										
Indeno(1,2,3-cd)pyrene	280	NE NE		< 0.05 < 0.09	< 0.05 < 0.10	0.35		< 0.05 < 0.10		< 0.05 < 0.09							
Naphthalene Phenanthrene	200	NE NE	[210] [14]	< 0.09 < 0.05	< 0.10 < 0.05	0.35	0.39 1	< 0.10 < 0.05	< 0.09 < 0.05	< 0.09 < 0.05	< 0.10 < 0.05	< 0.10 < 0.05					
	200	NE NE	110,000	< 0.05 < 0.05	0.34 2.5	5.2	< 0.05 < 0.05										
Pyrene	200	INE	110,000	< 0.00	< U.U0	< 0.00	< 0.00	< 0.00	< 0.00	< 0.00	2.3	J.Z	< 0.03	< 0.03	< 0.00	< 0.00	< 0.00
Pesticides (ug/L)																	
4,4' -DDD	[0.10]	NE	[0.05]					< 0.047			< 2.6		< 0.052				< 0.051
4,4' -DDE	[0.10]	NE	[0.05]					< 0.047			0.78		< 0.052				< 0.051
4,4' -DDT	[0.10]	NE	[0.05]					< 0.047			3		< 0.052				< 0.051

Bold indicates a detection

Bold and shaded cells indicates an exceedance of one or more of the listed criteria

GWPC - Groundwater Protection Criteria SWPC - Surface Water Protection Criteria Res VC - Residential Volatilization Criteria

[Green Text] = DEEP fast-track approveable additional polluting substances and alternative criteria; DEEP approval required {Red text} = draft proposed 2008 criteria for which no other recommendations have been made; DEEP approval required

* - denotes that the sample was field filtered for metals analyses prior to sample collection due to elevated turbidity

--- - not analyzed

mg/L - milligrams per Liter

ug/L - micrograms per Liter
VOCs - Volatile Organic Compounds PAHs - Polynuclear Aromatic Hydrocarbons

PCBs - Polychlorinated Biphenyls

Figures

Data Source(s):

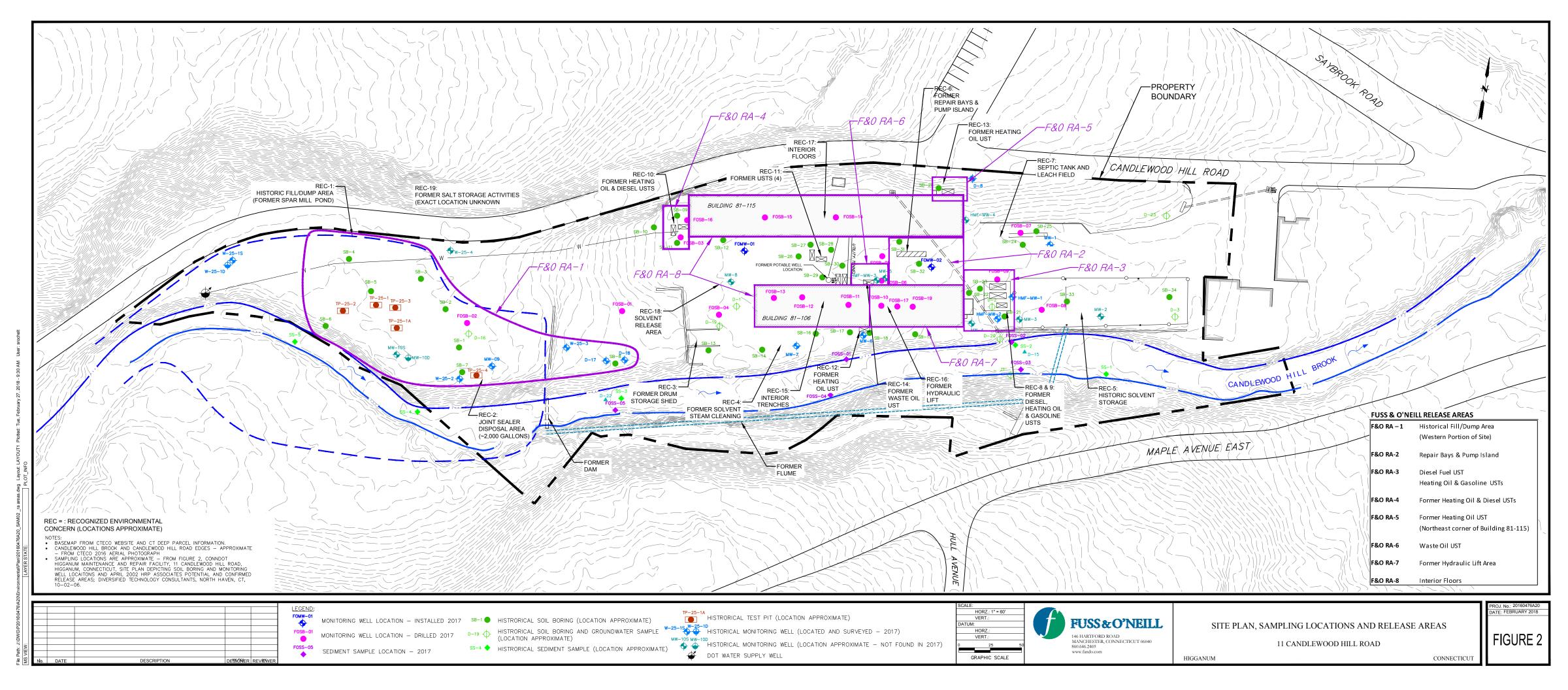
- 1. Parcel boundaries CT DEEP
- 2. Basemap National Geographic TOPO! 1:24,000-scale maps; TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.

http://goto.arcgisonline.com/maps/USA_Topo_Maps

Disclaimer: This map is not the product of a Professional Land Survey. It was created by Fuss & O'Neill, Inc. for general reference, informational, planning and guidance use, and is not a legally authoratative source as to location of natural or mammade features. Proper interpretation of this map may require the assistance of appropriate professional services. Fuss & O'Neill, Inc. makes no warrantee, express or implied, related to the spatial accuracy, reliability, completeness, or currentness of this map.

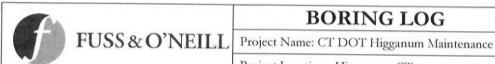
Site Location Map 11 Candlewood Hill Road

HIGGANUM


CONNECTICUT

PROJ. No. 20160476.A20 DATE: FEBRUARY 2018

roper express


1040 | FIGURE 1

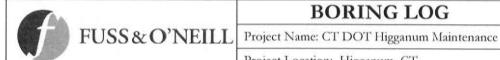
Appendix A

Boring Logs & Monitoring Well Completion Reports

	Location ID:		SB-01	
1	Sheet #:	1_	of 1	
	Project #:		20160476,A20	
1	Windless Desi	2	0 1 00 1 0	Ξ

	Project Location: Higganum	i, C1 Wear	ther: 305 G	wereast sunny
Contractor: Glacier Operator: MIN-C F&O Representative: BSC Drilling Method: Geoprobe Sampling Method: Dedicated trow Hammer Weight: N/A Hamme	rel/ terra cores	Location Description: Date Started: 11/15/2 Date/Time Completed: 11/1 Depth to Saturated Zone: Sample # Prefix: 13051711	017 5 /2017 ~ 5.75	wof site above tou referrings

DRI	LLING DET	AILE				A CONTRACTOR OF THE PROPERTY O			_		
START	BLOWS	REC/	DEPTH		М	ATERIAL DESCRIPTION		LITTIO		NALYTICAL SA	MPLES
DEPTH (FT)	6"	PEN (IN)	RANGE (FT)			SCRIPTION	PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
0		34/60		HSPHAL			ND				
			1.25	Send for	trojal	el, tr coil, loose,	1				A
			1.25-	Same	S odl. troa	1 - 0					
			2.8-5	nove	oven	c, del reprotori					
5		34/60	5-75	Rock, br	graves, tr	sandf-c, beose, any,					
121			7.8	Sand-fr tr gr Con	ne, some	sandf-c, leose, dry, sitt/clay, treour, tresh ome Mottung, Moist odor -7-8			-010	4-5	19807 1 Mech 2Hzo
10		26/36	10.5	same	very 3.75	-7.8		V			2110
			10.5-	bedrock		100	e de				
			11.2-13	Refusa	1 at 13	EOB	A				
	Milmile II										
											-
DIA	ORING METER		BORING N	METHOD	BORING DEPTH	REMARKS Field Instrument = PID-1 1	f refusal is c	encountered	, describe al	l efforts used	to confirm.
	1:5 "		Geop	robe	131	PID/OVM					
frace (tr) .ittle (ltl) EXAMPLE I	odor.	ON: gular grav	Some (sm) And	20 to 35% a 35 to 50% a clay; (10R 5/4),	wet at 7 ft.	Field Decon: Yes / No / Dedicated I		To To To		See Monitori Completion I	17977C - 150 CC (K)
615 00000000	ACTION CONTRACTOR	A.V. No. 1976									


Project Name: CT DOT Higganum Maintenance

Project Location: Higganum, CT

Location ID:	SB-	02
Sheet #:1	of	1
Project #:	201604	176.A20
Weather: 305	pyerca 97	Sunny

Contractor: Glacier	Location Description: DTC RA-1 W Of Site, on top of hill
Operator: Mike	Date Started: 11/ \$\frac{1}{2017}\$
F&O Representative: BSC	Date/Time Completed: 11/15/2017 @ 0900
Drilling Method: Geoprobe	Depth to Saturated Zone: ~8
Sampling Method: Dedicated trowel/ terra cores	
Hammer Weight: N/A Hammer Fall (inches): N/A	Sample # Prefix: 13051711 15 - 52

DRI	LLING DET	AILS			M/	ATERIAL DESCRIPTION			Ι Δ	NALYTICAL S.	AMPLES
START DEPTH (FI)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DE	SCRIPTION	PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
O	Q	50/60	0-0,8	TOPSOIL	sandt-c sit, loose brown	, lilgrace, tr	NI				
			4.1 4.1-C	Lucy	e, transitions,	no odor, brown					
5	7-6	146.15			overy of 08- netal discovery	4.1 doration, worst					
10		41160	11.1	Same of Same of Petro	slos-e. small in c, trease, no so	Lin ograver, snight Lin Some mottling Lop	\		-02	10 -	19902 1 Meath 2 HZO
	DRING		BORING I	METHOD	BORING	REMARKS					
	METER 1.5"		Geop		DEPTH 157			ncountered	, describe al	l efforts used	to confirm.
Trace (tr) Little (ltl)	odor.	ON: igular grav	Some (sm) And cl; ltl silt; tr	20 to 35%; 35 to 50%; clay; (10R 5/4)	, wet at 7 ft.	BACKFILL Asphalt / Concrete Bentonite Grout/Chips Cuttings/Native Material Other		Го Го Го		See Monitor Completion	

Project Location: Higganum, CT

Location I	D:	SB-0	5
Sheet #:	1	of	1
Project #:_		20160	476.A20
Weather:_	305	overca	St Sunnin

Drilling Samplin	tor: Represent g Method ng Metho	ative: l: od:	BSC Geopro Dedicat	obe red trowel/ to Hammer Fall		N/A	Location Description: Date Started: Date/Time Complete Depth to Saturated Zo Sample # Prefix: 1	11/15 / d:11/ one:	/2017 \$ /20 6 0 ~ . \$	17 5 °	etysels @ 092	Norde
DRI	LLING DET	AILS			МА	TERIAL DES	CRIPTION			Al	NALYTICAL SA	AMPLES
START DEPTH (F1)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DES	SCRIPTION		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
Ó		35/60	1.5- 3.2 3.28-	no rec	es 0-1.5, c	set	rach, freunt, 1, deur her her					
5		3960	83 8.5- 9.75	sand for	ine, som	es, 14 10	rausel, loose,			-03 @540	6-9	19807 1 Head 2470
								\\ .				
				Pri A	usa e	916	FOB					
	ORING AMETER 1 - 5"			METHOD	BORING DEPTH	PID/OV	rument = PID-1 I		encountered	d, describe a	ıll efforts used	I to confirm.
Trace (tr) Little (ltl)		ON:	Some (sm) And vel; ltl silt; tr	20 to 35% 35 to 50% r clay; (10R 5/4	f), wet at 7 ft.	BACKFI Asphalt / Bentonite			To To		See Monitor Completion	777

Reviewed by Staff:

Project Name: CT DOT Higganum Maintenance

Project Location: Higganum, CT

Location II):	SBOY		
Sheet #:	1	of	1	
Project #:_		20160	476.A20	
Woothow	200	BALANAA	010 - 010	Ī

Operat F&O R Drilling Samplin	or: Represen g Method	tative: d: od:	BSC Geopro Dedicat	be ed trowel/ to Hammer Fal		N/A	Location Descriptio Date Started: Date/Time Comple Depth to Saturated 2 Sample # Prefix:		2017 15/20 2.4	17	bldg rea	
DRII	LLING DET	AILS		The second secon		MATERIAL DESCRIPTION ANALYTICAL SAMPLES						
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FI)			SCRIPTION	CKIPTION	PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
5	32/1606-0.7 Candf-e, tras +re oal, 1. 0.7 - Sandf-E, tras 2.2/ Some mothers 2.4. Sandf-c, some of 3.2. Sandf-c, some of 3.2. Sandf-c, some of All48 5.62 Same as 2.4-3 6.2- 8.4 bedroch 8.4- no recovery						h, trogravel, e, massi dry, lowse, weet,	20/	CODE	-02/ 1000	No market	198°Z 1 Miort 1 Hio
	Préfusor O				9/	EOB.						
			1131						-010111111			
DIA	ORING METER 1-5"		BORING I	erican canas	BORING DEPTH	REMAR Field Inst PID/OV	rument = PID-1	If refusal is	encountered	l, describe a	ll efforts used	to confirm.
Frace (tr) Little (ltl) EXAMPLE	odor.	ION:	Some (sm) And rel; ltl silt; tr	20 to 35% 35 to 50% clay; (10R 5/4), wet at 7 ft.	BACKFI Asphalt / Bentonite Cuttings/		9	To To To		See Monitor Completion	

Project Name: CT DOT Higganum Maintenance

Project Location: Higganum, CT

	Location I	D:	Ma-	-01
7	Sheet #:	1	of	1
	Project #:		20160476.	A20
	Weather:_	305	overcas+	summ

Contractor: Glacier	Location Description: DTC-RA-11 Not NW corner of Slde
Operator: Mike	Date Started: 11/15/2017
F&O Representative: BSC	Date/Time Completed: 11/ 5/2017 @ 1010
Drilling Method: Geoprobe	Depth to Saturated Zone: ~2'
Sampling Method: Dedicated trowel/ terra cores	
Hammer Weight: N/A Hammer Fall (inches): N/A	Sample # Profess 12051711 / 5 05

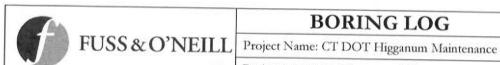
DRI	LLING DETA	AII S				ATTERIAL DESCRIPTION				ANALYTICAL SAMPLES		
START	BLOWS	REC/	DEPTH		NI.	ATERIAL DESCRIPTION		LITHO-	SAMPLE	DEPTH	7/20/20/20	
DEPTH (FT)	6"	PEN (IN)	RANGE (FT)		DESCRIPTION				NO. & TIME	INTERVAL (FT)	JARS & PRESERV.	
0	448	42/60	0-05	Sandf-c Sandf-c	Sanat-c, traspiral it grows, treod Sandt-c, trassin, tr growed, to brick trash, locate, dos, no oder sence as 65-2. no brick, wet,				1020	6.5-2	19802 1 Healt 2 Ho	
111-min		<i>b</i> .	3.25	sence of	865-2. 1 com	nobrick, wet,						
			3-5-2	norecov	_							
5		50/60	6-6.	send for	c, trese saar ane. Sill no odor	1. tr ash, loose, wet, clas, tr coal, wose, ver, loose, wet, no			1171			
						ver, loose, wet, no					ď	
WI - 111-11000			7.25-9.2	bedroc	<u>ل</u>			***************************************			*****	
			9.2-10	noteci	overs							
11		***		REGU	SAL @1	0' 6013	V					
										-		
	ORING METER			METHOD probe	BORING DEPTH	REMARKS Field Instrument = PID-1 I PID/OVM	If refusal is encountered, describe all efforts used to confirm.					
			<u> </u>	Field Decon: Yes / No / Dedicated I	Device			1				
PROPORTIONS USED: Trace (tr) 0 to 10° Some (sm) 20 to 35° Laule (ltl) 10 to 20° And 35 to 50° EXAMPLE DESCRIPTION: SAND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. Loose. No odor. Reviewed by Staff:			, wet at 7 ft.	BACKFILL Asphalt / Concrete Bentonite Grout/Chips Cuttings/Native Material Other	>	To To To		See Monitor Completion				

MONITORING WELL COMPLETION REPORT

GENERAL INFORMATION Project Name: __ CT DOT Higganum Maintenance Facility MW-01 Well ID: Project Location: ___ Higganum, CT Project No.: _ 20160476.A20 F&O Engineer/Geologist: ___BSC Ground Surface Elevation: 11/15/2017 Date of Completion: _ Permit #:_ N bldg (NW of Stdg) E1 Top of Steel Casing: Well Location Description: _ SW & Drilling Contractor/Name: Glacier / Mike E1 Top of PVC Casing: ___ Drilling Method: Geoprobe Measuring Point: TPS / PVC Well Cover (see codes): __ WELL CONSTRUCTION WELL CASING/RISER SUMP (below screen) PROTECTIVE CASING Diameter: _ Diameter: Diameter: Type: Road Box / Stand Pipe Type: Curb box Type: Stick-up: ___ Depth to Bottom: Stick-up: Length: Seal Material: Concrete SCREEN INTERVALS Diameter: __ 1. 5 in. Screen Interval: Description: PVQ / Other: _ Perforated / Slotted / Wire-Wrap / Pre-Pack / Other: BOREHOLE Total Boring Depth: _ 8 Diameter: Refusal: (v) n Depth: 10 ft. ANNULAR FILL SURFACE SEAL (Approximate volumes if available) Volume: bags Description Concrete / Other: BACKFILL Tremied: Y / N Volume: _ Description: Bentonite Grout / Cuttings / Sand / Native Material LOWER SEAL Tremied: (V/N Description: Rentonite Pellets / Bentonite Chips / Other: FILTER Tremied: Y / N Volume: _ Description: Sand Filter (type:)_ LOWER BACKFILL Interval: 8-2 ft. Tremied V/N Volume: Description: Bentonite Grout / Cuttings / Cand/ Native Material MONITORING WELL DEVELOPMENT* Development Method: Surge Block / Submersible Pump / Peristaltic Pump / Waterra / Bailer / Other_____ *See Monitoring Well Development Data Sheet for details

Project Name: CT DOT Higganum Maintenance

Project Location: Higganum, CT


Location ID:	2B-07	_
Sheet #: 1	of	-

Project #: 20160476.A20

Weather:_	MOS	Sunn
W Cather.	400	DOME CANAL

Contractor: Glacier	Location Description: DTC - RA-6, near former tank graves
Operator: Mike	Date Started: 11/ 15/2017
F&O Representative: BSC	Date/Time Completed: 11/15/2017 @ 1050
Drilling Method: Geoprobe	Depth to Saturated Zone: 3-5'
Sampling Method: Dedicated trowel/ terra cores	
Hammer Weight: N/A Hammer Fall (inches): N/A	Sample # Prefix: 13051711 C 06

DRI	LLING DETA	AILS			M		Ι	ANALYTICAL SAMPLES			
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		500	SCRIPTION	PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
6		45/60 0-2 Asphalt 62- Sand t-e, trimet 1.2 trigravei, oder, par 1-2- 3.75 Sand t-C, trigra loose, any.				als Hash, Hroad, Loose, dry, no Die-brown Syfrach, Hrmetels o oder, wet @	20			1-2.5	1 GBOZ 1 Mech 2 Hzo
	REFUSAL @			5' EUB	7						
											1011
BORING DIAMETER BORING METHOD DEPTH Geoprobe 5'		REMARKS Field Instrument = PID-1 If refusal is encountered, describe all efforts used to ecountered.					to confirm.				
PROPORTIONS USED: Trace (tr) 0 to 10% Some (sm) 20 to 35% Lattle (ltl) 10 to 20% And 35 to 50% EXAMPLE DESCRIPTION: SAND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. Loose. No odor. Reviewed by Staff:				BACKFILL Asphalt / Concrete Bentonite Grout/Chips Cuttings/Native Material Other	5	To To To		See Monitori Completion			

Project Location: Higganum, CT

Location ID	:	5	B-do
Sheet #:	_1	of	1
Project #:		20160	476.A20
Waathan	1100	C . 10 m	0

Contractor: Glacier Operator: Mi K. F&O Representative: BSC Drilling Method: Geoprobe Sampling Method: Dedicated trowel/ terra cores Hammer Weight: N/A Hammer Fall (inches):						N/A	Location Description Date Started: Date/Time Comple Depth to Saturated Sample # Prefix:	11/(5/ eted: <u>11/</u> Zone:	2017 15/20 ~5'	17	@ 113	011
	LLING DET				N	MATERIAL DES	CRIPTION		_	Ι Δ	NALYTICAL S/	MPI ES
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		D	DESCRIPTION		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
S)	0.7- 1.7- 2.3- 2.3- 5	same same same	as 0-0	3h. tr M Y 7, ne 17., p	itrorganies, refals, loose, conjunies	20				14802 16407 1 Meor 2 Hzo
S			6.8 6.8 4.2	pea gr Sand 1.	c tr gra		e-e, to growel					
DIA	RING METER	I	BORING M	IETHOD	BORING DEPTH	REMARK Field Instru		If referred in	enumb 1	done it iii	rr :	IV <u>E</u>
PROPORTIC 'race (tr) artle (ltl)	DNS USED: 0 to 10% 10 to 20% DESCRIPTIO M; sm IF an odor.	N: gular grave	Geopr Some (sm) And	20 to 35% 35 to 50% slay; (10R 5/4)	10'	PID/OVA Field Deco BACKFIL Asphalt / C Bentonite C	n: Yes / No / Dedicated L Concrete	T	o		efforts used to See Monitoria Completion R	ng Well

Reviewed by Staff:

Project Name: CT DOT Higganum Maintenance

Project Location: Higganum, CT

Location II	D:	M	W-02
Sheet #:	1	of	1
Project #:_		201604	176.A20
Weather:	405	Sunny	

· ·	
Contractor: Glacier	Location Description: DTC - RA-S, E of pump island
Operator: Live	Date Started: 11/ 15/2017
F&O Representative: BSC	Date/Time Completed: 11/15/2017 @ 1150
Drilling Method: Geoprobe	Depth to Saturated Zone: ~5.8
Sampling Method: Dedicated trowel/ terra cores	
Hammer Weight: N/A Hammer Fall (inches): N/A	Sample # Prefix: 13051711 15 - 09

START	LLING DET	AILS REC/	MATERIAL DESCRIPTION							NALYTICAL SA	MPLES
DEPTH (FI)	BLOWS 6"	PEN (IN)	DEPTH RANGE (FT)		DI	SCRIPTION	PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
0			1.6-	Sevial F	candgra brick, e	ravel, to cod, tr sino oder del, trood, trash, pose, dry, no odor					1
5		46/60	5-50	pera	raver						<u> , </u>
			7.4	petro	f-e, som	e petro, lecse, ast, osi petro visible from	5.9		-08 1200 -	6-7.5	19802 1 Mean 7 Hzo
	,			10'6	03				-100-31000		
	DRING		BORING	METHOD	BORING	REMARKS					
DIAMETER BORING METHOD DEPTH [. 5" Geoprobe (0")		PID/OVM		encountered	, describe a	ll efforts used	to confirm.				
PROPORTIONS USED: Trace (tr) 0 to 10° Some (sm) 20 to 35% Little (ltf) 10 to 20° And 35 to 50% EXAMPLE DESCRIPTION: SAND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. Loose, No odor. Reviewed by Staff:			BACKFILL Asphalt / Concrete Bentonite Grout/Chips Cuttings/Native Material Other	>	To To To To		See Monitor Completion				

MONITORING WELL COMPLETION REPORT

GENERAL INFORMATION Project Name: ___ CT DOT Higganum Maintenance Facility Well ID: 10 10 -02 Project Location: Higganum, CT Project No.: 20160476.A20 F&O Engineer/Geologist: BSC Ground Surface Elevation: ____ Date of Completion: ______ 11/15/2017 Well Location Description: _ E of E1 Top of Steel Casing: Drilling Contractor/Name: Glacier E1 Top of PVC Casing: Drilling Method: Geoprobe Measuring Point: TPS / PVC Well Cover (see codes): _____ WELL CONSTRUCTION WELL CASING/RISER SUMP (below screen) PROTECTIVE CASING ___in. Diameter: Diameter: ___ [- 5 Diameter: Type: Road Box / Stand Pipe Type: _ Curbbax Type: PYCCAP Stick-up: Depth to Bottom: Length: ____ Stick-up: _ O ft. Seal Material: Conovete SCREEN INTERVALS 8-3 ft Diameter: 1.5 in. Slot Size: Screen Interval: Description: RVCV Other: Type: Perforated / Slotted / Wire-Wrap / Pre-Pack / Other: BOREHOLE Total Boring Depth: 8 Diameter: 1 . 5 in Refusal: (y) n Depth: 10 ft. ANNULAR FILL SURFACE SEAL (Approximate volumes if available) Tremied Y/N Volume: ___ \ bags Description: Concrete / Other: BACKFILL Interval: _____ ft. Tremied: Y / N Volume: Description: Bentonite Grout / Cuttings / Sand / Native Material LOWER SEAL Interval: 2 -1 ft. Tremied: Y N Description: Bentonite Pellers / Bentonite Chips / Other: FILTER Interval: __ Tremied: Y/N Volume: _____bags Description: Sand Filter (type:) / Other: LOWER BACKFILL Interval: Tremied V/N Description: Bentonite Grout / Cuttings / Sand / Native Material Other: MONITORING WELL DEVELOPMENT* Development Method: Surge Block / Submersible Pump / Veristaltic Pump / Waterra / Bailer / Other_____ Date: 11/10/17

*See Monitoring Well Development Data Sheet for details

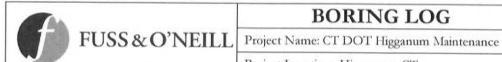
Project Name: CT DOT Higganum Maintenance

Project Location: Higganum, CT

Location ID:	SB-07
Sheet #:1	of 1
Project #:	20160476.A20
Weather:	

Contractor: Glacier Operator: Mike	Location Description: DTC-RA-7, Septic Field Date Started: 11/18/2017
F&O Representative: BSC	Date/Time Completed: 11/15/2017 @
Drilling Method: Geoprobe Sampling Method: Dedicated trowel/ terra cores	Depth to Saturated Zone: ~1.9
Hammer Weight: N/A Hammer Fall (inches): N/A	Sample # Prefix: 13051711 15 - 09

DR	LLING DET	AILS		7.	М	ATERIAL DESCRIPTION			Ι Δ	NALYTICAL S	AMPLES
START DEPTH (F1)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		Di	ESCRIPTION	PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
D		41/60	0-6.4				ND				
			0.4-	sandf-	tread,	tr gracel	1				
			1.9	1-40-6					-09 1305	2-3	19802
			1.9-	sandf.	c, sont s	HOSTER, treau, tr			3.7		1 Meat
			2.2-	metals	, loose, de	Hooding treatite				a source southern his	21/20
	***************************************		34	Same.	as 19-2	. 2. no sittemes,					
			3-4=	noreco	veolinpa	.z. no sitteres,					
5		36/60	S- Cat	Sance	8 1.01-7	.2				·	
			67- 7.8	Same.	us 1.9-	22, no Si 1+					
			7.8-8	bedro	ck					· · · · · · · · · · · · · · · · · · ·	
			8-10	bedroi no vec	overn						
÷				REFUSE	n @ 10'	EOB			12-111-1110	1 101	
						1	E				
DIA	ORING METER		BORING	METHOD	BORING DEPTH	REMARKS Field Instrument = PID-1 I	f refusal is c	encountered	, describe a	l efforts used	to confirm
1	.5"		Geor	robe	10'	PID/OVM					.556,376,244,444,45
	ONS USED:			THE STATE OF THE S		Field Decon: Yes / No / Dedicated I	Device				
Trace (tr) Little (ltl)	0 to 10% a 10 to 20% a		Some (sm) And	20 to 35% 35 to 50%		BACKFILL					
EXAMPLE SAND, F	DESCRIPTION:	ON: noular oraș	el: ItI silt: tr	clay; (10R 5/4)	wet at 7 ft	Asphalt / Concrete Bentonite Grout/Chips		То		See Monitor	
Loose, No	odor.	Sum Bran	and the same the	-my, (1/100 3/4)	, wet at / It.	Cuttings/Native Material)	То ТоСı		Completion	Keport
Reviewed	by Staff:					Other		То			



Project Name: CT DOT Higganum Maintenance

Project Location: Higganum, CT

Contractor: Glacier	Location Description: DTC-RA-S, E of Sbldg in former bldg
Operator: MIKE	Date Started: 11/ 15/2017 Footprine
F&O Representative: BSC	Date/Time Completed: 11/ (5 /2017 @ 132.6
Drilling Method: Geoprobe	Depth to Saturated Zone: ~6.4'
Sampling Method: Dedicated trowel/ terra cores	
Hammer Weight: N/A Hammer Fall (inches): N/A	Sample # Prefix: 13051711 15 - 10

7444					MA	TERIAL DESCRIPTION			Ι Δ	NALYTICAL S	AMPLES	
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.				
0		3(60	0.4-	Sanelt	-e, +v or	some asphelt rauli, tr coal, tr	ND					
		Juniora de Santo	1.2-			. I cose, dry, no						
			1.5-	Lin	ext, ders, 1	Moder, black			-10 1330	0.5-	19802 1 Meoit	
			2.6	Send for the not recovered to the contract of	oder I may	tr brick, loose,					2,420	
5		24/36	5-5.4	Roch		41-24					**************************************	
;;====;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			6.4-7	Sond f.	C, ltheyro	and the coal/ash is promon west the coal, local,			a attituda (a)		*	
			10 1000	bedro	ch no od	or brown						
	***************************************	p==1=	7 -8	norec	suerry				14-11111			
				REFUS	HO81	EOB		*************				
	DRING METER		BORING I	energine energy	BORING DEPTH	REMARKS Field Instrument = PID-1 I PID/OVM	f refusal is c	encounterec	l, describe a	ll efforts used	to confirm.	
						Field Decon: Yes / No / Dedicated I	Device					
Trace (tr) Little (ltl) EXAMPLE			Some (sm) And	35 to 50%		BACKFILL Asphalt / Concrete		То		See Monitor	1 Met 1 - 1 Co. 1	
Loose, No	EXAMPLE DESCRIPTION: SAND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. Loose. No odor. Reviewed by Staff:					Bentonite Grout/Chips Cuttings/Native Material Other		То То	Completion Report			

Project Location: Higganum, CT

Location ID:_ Sheet #:_ Project #:_ 20160476.A20 Weather: 40s sunna

Contractor: Glacier	Location Description: DTC - RA - 9, Off NE corner of S
Operator: MIKE	Date Started: 11/15/2017
F&O Representative: BSC	Date/Time Completed: 11/ 15 /2017 @ 1346
Drilling Method: Geoprobe	Depth to Saturated Zone:
Sampling Method: Dedicated trowel/ terra cores	
Hammer Weight: N/A Hammer Fall (inches): N/A	Sample # Prefix: 13051711 5 - 41

DRI	LLING DET	AILS			MA	TERIAL DESCRIPTION			Ι	NALYTICAL SA	MPLES
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DE	SCRIPTION	PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
٥		24/60		Pen o tr od No reco	contlas ur	one sand fee, hilose, and	20				
5				same		, trgradel, moist					
10		19160	10 - 11.	Sand f- bedrock no rec	as 5-7.	6, net lase, wet, no odor Fusm on Bedrein	4		-11	11.25-	16802 16402 1 Mecil 2 Hzc
			Hall to the second							110	
	ORING METER		BORING I	Managar Parkan	BORING DEPTH	REMARKS Field Instrument = PID-1 PID/OVM		encountered	, describe al	ll efforts used	to confirm.
Trace (tr) Little (ltl) EXAMPLE	odor.		Some (sm) And 'el; ltl silt; tr	20 to 35% 35 to 50% clay; (10R 5/4), wet at 7 ft.	BACKFILL Asphalt / Concrete Bentonite Grout/Chips Cuttings/Native Material Other		To To To To		See Monitor Completion	

ATT.	
	FUSS&O']

NEILL Project Name: CT DOT Higganum Maintenance

Project Location: Higganum, CT

Location I	D:	Si	3-10
Sheet #:	1	of	1
Project #:		20160	476.A20
1777	4.1	-	

		Transition of the state of the
Contractor: Glacier Operator: M.W. F&O Representative: BSC Drilling Method: Geoprobe Sampling Method: Dedicated trowel/ terra cores Hammer Weight: N/A Hammer Fall (inches):	Location Description Date Started: Date/Time Complete Depth to Saturated Z N/A Sample # Prefix:	one:~5

	ILLING DET					MATERIAL I	DESCRIPTION				Ι Λ	NALYTICAL SA	AMPLES
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)			DESCRIPTIO	N		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
O	===	1 1		Sand f loc noteco	-c. som	legrous inso	el/abno	rete,	ND		-16 0960	0-0.25	1G407
6	ion.	3960	6.1-	sand f use Same a	8 5.3	grower th, per	, petro tro sme tick	etro sonel	0.2		-17 0925	5.3-6.1	764802 16402 1 Hear 2Hzo
			7.5-10	no rec	covern						, ,	T T	
				REFI	WAL (910'	40B						
	ORING AMETER		BORING	METHOD	BORING DEPTH	#1000 MILITARY	ARKS	PID-1	. *			l efforts used	1071 NN DEC 1-27-27-2

BORING BORING METHOD			REMARKS Field Instrument = PID-1	If refusal is ene	If refusal is encountered, describe all efforts used to o				
1.5"	Geoprobe	16'	PID/OVM	The second of the second country and the seco					
PROPORTIONS USED:			Field Decon: Yes / No / Dedica	ated Device					
Erace (tr) 0 to 10% Lattle (ld) 10 to 20%	Some [sm] 20 to 35% And 35 to 50%		BACKFILL						
EXAMPLE DESCRIPTION: SAND, If-M: sm If angula	r gravel; lt1 silt; tr clay; (10R 5/4)	wor at 7 fi	Asphalt // Concrete Bentonite Grout/Chips			See Monitoring Well			
Loose, No odor.	Burning a cad, fractor	Cuttings/Native Material		,	Completion Report				
Reviewed by Staff:			Other	Ti-)				

FUSS&O'NEILL

Hammer Weight: N/A Hammer Fall (inches):

BORING LOG

Project Name: CT DOT Higganum Maintenance

Project Location: Higganum, CT

N/A

Location ID:		SB-1				
Sheet #:	1	of	1			
Project #:		20160	476.A20			
Weather:	05,	min	7.5-0.50-0-1			

Contractor: Gl	acier	
Operator:	Mike	
F&O Representative:	BSC	
Drilling Method:	Geoprobe	
Sampling Method:	Dedicated trowel/ terra cores	

Location Description: Date Started:__ Date/Time Completed: 11/16/2017

Depth to Saturated Zone: ~2.9.

Sample # Prefix: 13051711

BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE					NALYTICAL SA	
		(FT)	DESCRIPTION	PID-	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV,
	40160	0 -00	concrete			-18	0-03	19802
		0.8	vein of sandl-c, local, try, no odor,			0950		
		0.8-	Sandf-cand coal, loose, dry, no odor.					
		1.2-	Same as section 0.8, Hocal			1005	5.5-	1989
		2.9-	same as 11.2-29, wet, tr sittle					21+20
1		3-3-5	no recovery					
	Ma	5-5.1	Same as 2.9-3.3 cool seam					*
		5.9	Same as 2.9-33, and graves				-	
		5.9-	Sand f.c, trood, trash, tr metal slag, travalle, loose, dry, no oder					
		68-						
		7.5-	beelroch					
			REFUSAL @10 EOB					
RING		BORING N						
	1ETER	RING	1.2 1.2- 2.9 2.9- 3.3 3.3-5 5.1- 5.1- 5.9 6.9- 6.9 6.8- 7.5- 8.5	Sand - cand coal, loose, dry, no odor. 1.2	Sand - cond coal, loose, dry, no odor, block 1.2- 2.9- Same as a coal of the coal 2.9- 3.3- 3.3- 5 no recovery 42/100 5-5.1 5.1- 5.1- 5.1- 5.1- 5.1- 5.1- 5.1-	Sant cond coal, loose, dry, no odor, block 1.2 Same as as as 0.8, trood 2.9 Same as 1.229, wet, tr siticley 3.3 No recovery 47/60 5-5.1 Same as 2.9-3.3 Coal seam 5.1 Same as 2.9-3.3, and greves 5.5 Roch 5.9 Same as 7.9-3.3, and greves 6.8 Same as 7.9-6.8, uset 8.5 Same as 7.6 B, uset Bestrich REFUSAL © 10 EOB	Sand - cand coad, look, dry, no odor. 1.2	Sand-cand coal, look, dry, no ador. 1.2 Same as and coal, look, dry, no ador. 1.2 Same as and coal, look, dry, no ador. 1.2 Same as and coal, look, dry, no ador. 1.2 Same as 1.229, wet, tr siticient 3.3 No (ccovery) Same as 2.9-3.3 Coal scarn Sale as 2.9-3.3, and grevel Sale as 2.9-3.3, and grevel

BORING DIAMETER	BORING METHOD	BORING DEPTH	REMARKS Field Instrument =	PID-1	If refusal is e	encountered desc	cribe all efforts used to confirm.		
1.5"	Geoprobe	10	PID/OVM		an entitle date to comme				
PROPORTIONS USED:			Field Decon: Yes / 1	No / Dedica	ated Device				
Trace (tr) 0 to 10% Little (ld) 10 to 20%	Score (sm) 20 to 35% And 35 to 50%		BACKFILL						
EXAMPLE DESCRIPTION:		Asphalt / Concrete			To	See Monitoring Well			
SAND, F-M; sm F angular	Bentonite Grout/Chip	38		То	Completion Report				
lor,		Cuttings/Native Mate	rial	117	To	SERVICE STATE OF THE SERVICE			

taff:

Project Name: CT DOT Higganum Maintenance

Project Location: Higganum, CT

Contractor: Glacier Operator: MIKE	Location Description: Stilla W boy, Eerd of French					
F&O Representative: BSC Drilling Method: Geoprobe	Date/Time Completed: 11/16/2017 @ 1045 Depth to Saturated Zone: 0.7					
Sampling Method: Dedicated trowel/ terra cores Hammer Weight: N/A Hammer Fall (inches): N/A	Sample # Prefix: 13051711 16 - 2000					

DRII	LING DET	AILS	MATERIAL DESCRIPTION					1 A2	ANALYTICAL SAMPLES		
START DEPTH	BLOWS 6"	REC/ PEN	DEPTH RANGE			SCRIPTION	PID	LITHO- LOGIC	SAMPLE NO. &	DEPTH INTERVAL	JARS & PRESERV.
(F1)		(IN)	(FT)	concre	le.	MAN (170 C C) 20	10	CODE	TIME	(FT)	PRESERV.
0		3460	00.7				ND				
			0.7-	Sound for	e, troprave	metal, loose, moist,					
			1.5	Cau	perso, 11	metac, eccaci meisi			-20	0.5-	29800 1 Means
						Cored			1100	1.2	2420
			2.7	Scirce o	080-1-1-1	no petro, no concrete, no metel,					
			2-7-5	none		-1-					
2		100	0- p- 6-	Cana	C . F 7						
		21/30	2 2-7	Same	S 1.5-2	1					
			5.5-6-3	coner	ele	2016					
111111			6.2-	weath	eree see	icon					
			V.7-	norece	ered bed overy						
			4.7				Ψ				
				0-							
				Retu	SAL (1)	7.5', 603					
	ORING AMETER		BORING	METHOD	BORING DEPTH	REMARKS Field Instrument = PID-1	If refued is a	nequeter	ed, describe all efforts used to confirm		
Geoprobe 7.51		PID/OVM	11 IVAGSII IS C	neomiteree	i, desembe it	ii citoris usco	157 SOMMETTI.				
						Field Decon: Yes / No / Dedicated I	Dovine				
Trace (rg)	IONS USED		Some (sm)				Lecvice				
Little (ltl)	10 to 20%	ON	And	35 to 50%		BACKFILL Asphalt / Concrete		То	See Monitoring Well		ing Well
SAND, I Loose, N		ngular gra	vel; ltl silt; tr	clay; (10R 5/4)	, wet at 7 ft.	Bentonite Grout/Chips		То	Completion Report		
Reviewee						Cuttings/Native Material		То <u> </u>			
ACVIEWEC	by start:										

Project Name: CT DOT Higganum Maintenance

Project Location: Higganum, CT

Location ID: 513 - 13
Sheet #: 1 of 1
Project #: 20160476.A20
Weather: 405 over Cest

Contra	ctor:	Gla	acier				Location Descript	ion: Shid	a tilbo	n wis	un Hen	ch
Operat		V	lIKE				Location Description: Sbldg, Whay, WSide Hench Date Started: 11/16/2017					
	Represent		BSC	approximate the second			Date/Time Completed: 11/1/2017 @ 103 Depth to Saturated Zone: White Over >3					
	Method		Geopro				Depth to Saturated	d Zone: U	hknow	n/ >2	,′	
	er Weigh			ed trowel/ to Hammer Fal		N/A	Sample # Prefix:_	12051711	vi.	21		
				initiate i ai	(interies)	+ 1/ 21	Sample # Frenx	13031/1	16	-61		
DRI	LLING DET	AILS	T		M	ATERIAL DES	CRIPTION			Ι .	NALVIICAL SA	MPI ES
START DEPTH	BLOWS	REC/ PEN	DEPTH RANGE			ESCRIPTION	3011-1011/10101		LITHO-	SAMPLE		
(FT)	6"	(IN)	(FT)			ESCRIPTION		PID	LOGIC	NO. & TIME	(FT)	JARS & PRESERV.
5		21/36	0.6	concre	re			ND		-21	0.8-	29802
								1-0		1110	1.75	1 Meost
			0.6-	Soundet	C, tr coa	& sell	neverallova				, , , ,	2420
			0.8	la	se, dry	1. noc	owhereven do v					
								181				
			08-	Sand F.	candb	nch						
			11	Cand f-	c and coo	al						
					C 44 66							
			1.25-1-3	ash								
			1.3-	sandt	-c and c	oal						
			1.48	00000	Vaino			1				
			1.75-3	HOTEL	7			v			1111	
								4				
								1				
			771.771									
											100	
				REFU	CAI (93	40 1	METAL					
					FO	12	METAL					
		-				.)					=	
	1											
P	OBING											
BORING BORING METHOD BORING DEPTH Geoprobe 3/				Pield Instr		If refusal is	encountered	describe a	ll efforts used	to confirm		
				PID/OV		., ., ., ., .,		, constitute it	ii cirorio ance	w commit		
ROPORT	IONS USED					Field Dec	on: Yes / No / Dedicat	ed Device				
race (tr) ittle_(ltl)	0 to 10% 10 to 20%		Some (sm) And	20 to 35% 35 to 50%		BACKFII	τ.					
	DESCRIPTI	ON:	927-6271	CHANGE III		Asphalt /			То		See Monitor	ing Well
AND, F	-M; sm F a	ngular gra	vel; ltl silt; tr	clay; (10R 5/4), wet at 7 ft.			77	То		Completion	VIII. (615) 110
oose, N	o odor.						Grout/Chips Native Material		To		a more and are districted	and the rest of
leviewed	by Staff:					Other			То			
The state of the s												

ALC:	
	FUSS & O'NEILI

Project Name: CT DOT Higganum Maintenance

Project Location: Higganum, CT

Location II):S	B-14	
Sheet #:	1	of	1
Project #:_		20160	476.A20
Weather	HOC	allow	48 0

Contractor: Glacier	Location Description: N bldg, & bay rear drum orn
Operator: Mike	Date Started: 11/16/2017
F&O Representative: BSC	Date/Time Completed: 11/16/2017 @ 1200
Drilling Method: Geoprobe	Depth to Saturated Zone:
Sampling Method: Dedicated trowel/ terra cores	
Hammer Weight: N/A Hammer Fall (inches): N/A	Sample # Prefix: 13051711 16 - 22 23

	LLING DET	MUNICIPAL CONTRACTOR			M/	TERIAL DESC	CRIPTION				ANALYTICAL SAMPLES			
START DEPTH (IT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DE	SCRIPTION			PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.	
Ó		34/60	0.5-	concre	ed sand f	Some CALLO NO od	coal	,	ND		-22 1230	0-0-3	16,802	
			1.9-3	Sandf- oder, Some a	and f-c, trocal, Loose, dry, no oder, brown ence as 1.3-19, wet and f-c, tr gravel, loose, wet, no oder, orange came as 1.9-2.3					-23 (235	1.52.5	ZYSOZ I HEOH ZYZO		
			3.2 3.2-5	novecs										
				S' Et	S' EOB due to height suntations for geoprobe									
В	ORING				BORING	REMAR	KS						š	
DIAMETER BORING METHOD DEPTH Geoprobe 5		Field Instr PID/OV	rument = P[]			encountered	l, describe al	ll efforts used	to confirm.					
PROPORTIONS USED: Trace (tr) 0 to 10% Some (sm) 20 to 35% Little (ltl) 10 to 20% And 35 to 50% EXAMPLE DESCRIPTION: SAND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. Loose. No odor. Reviewed by Staff:					BACKFII Asphalt / Bentonite	Concrete Grout/Chips Native Material			To To To		See Monitor Completion	Contract of the Contract of th		

DUFE

FUSS & O'NEILL

BORING LOG

Project Name: CT DOT Higganum Maintenance

Project Location: Higganum, CT

Location ID:		SB-15	
Sheet #:	1	of	1
Project #:		201604	76.A20
Weather: S	20	Samme	

Contractor: C	Glacier	I De Die Dildde Landland and De Dildde
Operator:	Mike	Date Started: 11/16/2017 Place Ava
F&O Representative:		Date/Time Completed: 11/ \(\(\lambda\)/2017 @ 1435 1235
Drilling Method:	Geoprobe	Depth to Saturated Zone: ~2'
Sampling Method:	Dedicated trowel/ terra cores	- 1 Personal State of All Control of Control
Hammer Weight:	N/A Hammer Fall (inches): N/A	Sample # Prefix: 13051711 16 - 24/25 126

DRILLING DETAILS				MATERIAL I	MATERIAL DESCRIPTION			ANALYTICAL SAMPLES			
TART EPTH (F1)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)	DESCRIPTIO	N	PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.	
ಲ		41/60	0.7	Sand f-e, some coal brown, no oder Sance as 0-7-1.3,		ND		-24 1300 -25 1310	0-6.3	2 G 2 SE 1 Meant 2 H20	
5		160	2-29 29- 34 34-5	Same as 1.3-2, u stag Same as 2-2-9, som no recovery Same as 1.3-2 Coal and Sand F-e	esittles		Civ.	1320	(-2.5	ZGBen I MeoH ZHZO	
				Same as 1.3-2, ltl gravel Sand-fine availt clear (81H, Hr cord, trimetals, compact, wet,							
				novecovery							
	ORING AMETER		BORING I	DEPTH Field I	nstrument = PID-1 I	f refusal is o	encounterec	, describe :	ull efforts used	to confirm.	

BORING DIAMETER	BORING METHOD	BORING DEPTH	REMARKS Field Instrument = PID-1	If refusal is encountered, describe all efforts used to confi					
1.5"	Geoprobe	10'	PID/OVM Field Decon: Yes / No / Dedica	ted Design					
PROPORTIONS USED: Trace (rt) = 0 to 10% Linle (lt) = 10 to 20% EXAMPLE DESCRIPTION: SAND, F-M; sm F angular Loose. No odor. Reviewed by Staff:	Some (sm) 20 to 35% And 35 to 50% gravel; ltl silt; tr clay; (10R 5/4)), wet at 7 ft.	BACKFILL Asphalt / Concrete Bentonite Grout/Chips Cuttings/Native Material Other	To	See Monitoring Well Completion Report				

Project Name: CT DOT Higganum Maintenance

Project Location: Higganum, CT

Location ID:_ Sheet #:___ Project #:_ 20160476.A20 Weather: 50s Overcast

Operator: F&O Representative: Drilling Method: Sampling Method:	BSC Geoprobe Dedicated trowel/ terra cores N/A Hammer Fall (inches): N/A	Location Description: Test work Date Started: 11/1/2017 Date/Time Completed: 11/1/2/2 Depth to Saturated Zone: 13051711	2017 @ 1340
DRILLING DETAILS START REC/	MATERIAI DEPTH	DESCRIPTION	ANALYTICAL SAMPLES

DRI	LLING DET	AILS			M	ATERIAL DESCRIPTION			ANALYTICAL SAMPLES			
START DEPTH (IT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DI	SCRIPTION	PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (ET)	JARS & PRESERV.	
0		401600	0.3-	Sound f	c, troc	el, troproved, trorganics al, trometals, trongle nooder, wer@12	ND		-27	1-2.5	29802 1 HEOH	
			2.5	Sandf- Sandf- Loose no reco	1.2-16 c, ltdgrad c, dn, n	ellrock, trepal,			155 N. H.	11-11-11-11	2 H20	
5		23/60	5-57	Same	es 2.5-	3.3, used, tr metals						
			675	same o	compac	, some clarysit,						
			6.75	Volece	overy)	/ ex	6.7	111110				
				RETU	SAL @ 10	60B						
	NAME OF THE PROPERTY OF THE PR				*	= 3 = 3 = 5 E= 9%:						
	DRING METER	Y	BORING I Geop	METHOD	BORING DEPTH (O'	PID/OVM		ncountered	, describe al	l efforts used	to confirm.	
Trace (tr) Little (ltl) EXAMPLE	odor.	ON:	Some (sm) And	20 to 35%, 35 to 50%, clay; (10R 5/4)	, wet at 7 ft.	Cuttings/Native Material		То ГоС Го		See Monitori Completion	Character and	

Project Name: CT DUT HIGGANUM

Project Location: HGGANUM, CT

Contractor: GLACIER	Location Description: 13' E OF SB-10
Operator: MIKE	Date Started: \\ p 7
F&O Representative: B&C	Date/Time Completed: 11/16/17 @14/26
Drilling Method: GEOPROBE	Depth to Saturated Zone: ~2.4
Sampling Method: TERRACORE DED. TROWEL	
Hammer Weight: Hammer Fall (inches):	Sample # Prefix: 130517116 - 28

DRILLING DETAILS MATERIAL DESCRIPTION ANALYTICAL SAMPLES DEPTH LITHO BLOWS JARS & PRESERV. DESCRIPTION PID LOGIC NO. & TIME INTERVAL (FT) DEPTH PEN RANGE (IN) (FT) 0-0-6 concrete 0 ND Sandf-C. trgrawel, trbnch. trcoal, tr sandf-cand coal, tr gravel Sand fine and clay/sil+, tropraved, west 3-25-5 no recovery 30/36 5-7-61 rock, some sand 5 61-6.7 Sandf-C. tr Metal, tread, tr petroodor+ Starring 19807 1 Mean -28 6.1-7.5 1430 2 Hze 7.275 Same as 6.1-6.7, hardranic found oder 7-5-8 no recover REPUSAL @8', EUB BORING BORING REMARKS BORING METHOD DIAMETER DEPTH Field Instrument = If refusal is encountered, describe all efforts used to confirm. MVO/QIN CIFOPROBE Field Decon: Yes / No / Dedicated Device PROPORTIONS USED: 0 to 10% 10 to 20% 20 to 35% 35 to 50% BACKFILL Asphalt / Concrete See Monitoring Well EXAMPLE DESCRIPTION: Bentonite Grout/Chips Completion Report SAND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. Cuttings/Native Material ______ Loose. No odor. To _____ Other ___ То _____ Reviewed by Staff:

GA.	FUSS & O'NEILL
W	1 COO CC TILILL


Project Name: CTDOT HIGGANUM

Project Location: HIGGANUM, CT

Location ID: SB-19
Sheet #: 1 of 1
Project #: 20160476-A20
Weather: SOS OVACCAST

	Troject Boundary Angelan Wel, Cr	
Contractor: GLACIER	Location Description	pn: 10.5' E OF SB-17 (23.5' E OF SB-17
Operator: MIKE	Date Started: 11	16/17
F&O Representative: BSC	Date/Time Comple	eted: 11 10 17 @ 14 45
Drilling Method: GEOROBE	Depth to Saturated	Zone: ~ 6.7'
Sampling Method: TERRACORY (DED	MCATED TROWER	
Hammer Weight:Hamm	er Fall (inches): Sample # Prefix:_1	30517116 - 29

DRII	LING DETA	ILS			MA	TERIAL DESCRIPTION			A	NALYTICAL SA	MPLES
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DE	SCRIPTION	PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
0		37/60	1.2-1.7	sand f < sand f - c a same as	tregravel rock and tresoli 100 oder nacoal	tr merals, loose, brown,			100		
5		25/36	2-1-5 28-4:1	sandfic, sandfine com no reco	tread, some clar	d silt, trood, trinefals, sawr, triock, wet e) 6:			-29 1455	5.8-7.1	19802 1 Mea H 2 H2 O
				REFLE	JAL (3) E	8', EOB					
	ORING AMETER		COMMONWAY OF THE PARTY OF THE P	METHOD	BORING DEPTH	REMARKS Beld Instrument = PID/OVM	If refusal is	encountere	d, describe	all efforts use	d to confirm.
Trace (tr)	1 · 5 ** TIONS USED 0 to 10**	1	Some (sm	g 20 to 35%	<u> </u>	Field Decon: Yes / No / Redicated	Device				
SAND, I Loose, N			And ivel; ltl silt; t	35 to 50% r clay; (10R 5/4)), wet at 7 ft.	BACKFILL Asphalt / Concrete Bentonite Grout/Chips Cuttings/Native Material Other	35	To To To)	See Monitor Completion	A345000000000000000000000000000000000000

Project Location: MGEANUM, CT

SB-18 Location ID:___ Sheet #: 1 of 1 Project #: 20160476-A20 Weather: 505 Overcast

Location Description: ~ 17' E of MW-02
Date Started: 11/16/17
Date/Time Completed: 111617 @ 1515
Depth to Saturated Zone:
Sample # Prefix: 1305171116 - 30

DRII	LING DETA	III.S			MA	TERIAL DESCRIPTION		525.0 VEGET	A	NALYTICAL SA	MPLES
START DEPTH (I'I')	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DES	SCRIPTION	PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
0		42/60				trood, loose, dry,	70				
à.			1-6-	Sand F-C No Same as	and coa	l, trash, worde, dry,					
			26-3.5	sandf-c, los no recou	tropal, tr rudry, no rem	metels, Itlgraves, oder		36.			
5		30/60	55.4	Sandt-c/s	enuthed nodor ador troodk, to	ock, loose, dry, white, rrock, black/brown,			3 11444 - 41411	1011	
			6-3-	sandfair	gments Dino ode	tr coal, tr metal, look,			-30	5.5-	19807
			7.5	rock fra	6.3-6.5 gments				12-2	+ 2	1 MEOH 2 HZO
		11 344444	7.50	no reco	very		1				41.
Mod III II I				REFU	SALOI	of EOB	1			100	
	ORING AMETER		BORING	METHOD	BORING DEPTH	REMARKS Fjeld Instrument =	If refusal is	encountere	ed, describe	all efforts use	d to confirm.
	1.5"		CHEOR	ROBE	10′	PID/OVM Field Decon: Yes / No / Dedicated	Device				
EXAMPLE SAND, I Loose, N		ION:	Some (sn And avel; ltl silt; t	20 to 35%, 35 to 50%, r clay; (10R 5/4)	, wet at 7 ft.	BACKFILL Asphalt / Concrete Bentonite Grout/Chips Cuttings/Native Material Other		To To To	>	See Monitor Completion	

Appendix B

Groundwater Sampling Field Data Sheets

roject Location:	Higgson	m CT	PROIECT	#: 20160470	5.A20	F I	USS	&O	NEILL	
roject Location:	Tigganu	, 5			-	***				
ample#: 130	5171122	5-05	WELL II	D:W·25-	100					
urge Data								ple Da		
Date: 11/22/17					2055	Container	Qua		Preservative	
tart time:	0850				16 6+	VOA Amber L	3 2		lce	
	200 d: 3	(ml/m)		Sampled:BS	SCOVP	P250	1		HNO3	
otal time purge olume Purged:	d:	6 (ltr)				P250 Amber L	1		Ice	
Volume Purged: (Itr) Purge Device: Dedicated / Nondedicated Device Type: Bladder / Peristallic / Submersible							@		Ice	
Device Type: Bl	adder / P	eristaltic / Subme	ersible							
iltered? N/Y appearance: Cla	Fifter-Siz	e: 100 / 0:130 1	Filtered in: Field / PVC:							
Well Yield: (ligh)/ Moder	ate / Low / Dr	TPS:	15.34						
Vell Diameter:	2"	ATTENDED TO SECURE	DTB:	17.7						
Comments:										
			Field	d Paramete	r Data					
Instrument ID	#		12 / 24/1-1						-	
Testwell		HF Sci#	YS1600H1		7	Specific Condu	etivity	84	21 60	
Water Level (ft)	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	pH (S.U.)	Temp. (deg C)	(uS)			ORP(mV)	
12.59	0880	START	PUROLE -	P > d	15.5	2019		11!	7.5	
12.63	0910	2,88	3.16	5.75	13.7	201.9				
12.63	0913	1.55	3.07	5.75	13.7	199.5		-113		
12.63	0916	1.08	3.18	5.77	13.7	194.6		-19		
12.63	0919	1.03	3.09	5.77	13.7	202.1		-110	1.1	
10.03	0922	Sample								
	Olaa	Sympic								
				_4						
					J. 207 70 F 1	± 3%	3			
<0.3' Well Condition	n Checkl		± 10% when > 1	± 0.1 (circle appropr	± 3% (0.5 degrate item(s), cross					
well Condido	ii Checki	404								
General Conditi	ion: Good	D/ Needs Repair	/B / F / 2	None	Is well plur	nb?: ∅/ N d)/ Broken <u>/</u> N	lone			
Protective Steel	: OK)/	Tracked / Leaking	Bent / Loose/ 1	None	Rust aroun	d cap: Y / (N)				
Well # Visible?: Well Cap: Good	D/ Broke	en / None			PVC Riser:	(Good) Damas	ged / No	one	151	
Evidence of rais	n water be	tween steel and	PVC?: Y / 🕥		Concrete co	ollar: OK/ Cra	cked /	Leaking	/ None	
Evidence of por	nding arou	und well?: Y /Q d collar?: Y / N	5		Curb Box:	ence of: Rodents	Hex / P	ent / O	ther)	
Combon to										

ient/Project Nar	ne: CT D	OT Higganum	Maintenance & Re	pair Facility		MA .	X 100	a 02	NUCLLI
oject Location: I				#: 20160476. <i>A</i>	\\ 20	H.	USS	80	NEILL
ample#: 1305	5171122-	03	WELL II): MW-0	06				
								ple Da	
urge Data						Container	Quar		Preservativ
ate: 11/22/17	10/6	Stop time:		nple time:	111051	VOA Amber L	3 2		Ice
tart time: ump Rate:	200		Depth S	and the same	ANVE	P250	1		F/HNO3
otal time purged		41		Sampler:BS6	/NVF	P250	1		Ice
1 Durgod		8 (ltr)		Weather: 408 1	ain_	-Amber L	-	>	Ice ,
urge Device: Do	dicated /	Nondedicated	reible						
Device Type: Blan				Lab 6.7	7				
nnearance S	lich It	en cloud	PVC:		1				
Appearance: Well Yield: High	/ Modera	ite / Low / Dry	TPS:		= 4.11				
Well Diameter: 7	1 41		DTB	144 70.00	17.00				
Comments:				S					
			Fiel	d Parameter	Data				
	ш		YS1600#2						
Instrument ID	, L	HF Sci# ≥	tasit.				- delen		PRINTED DE LA COMPANIA
		Turbidity	Dissolved	pH (S.U.)	Temp.	Specific Conductivity ORP(RP(mV)	
Water Level (ft)	Time	(ntu)	Oxygen (mg/L)		(deg C)	(uc)		9	
6.77	1010	2		STA	RT	_			-1
	1010	335.3	3.58	6.28	13.4	467.6	2		1-7
8.00	1020		3.27	6.27	13.5	459.		36	5-5
8.35	1030	19103		6.29	13.5	447	9	38	36-1
8.66	1040	90.7	3.83			4110	5	38	7.6
8.85	1050	103.9	3.85	6,27	13.6	140	-	1	,
0 00	1051	4		STOP	-		- 7	13	
		1		SAMPI	E -		-	2	
	1051	-							
		Also Assessed						Jan 1	
					1				
		, =							
		/							
	-							-	
	-				58				
	-			100					
				1 0 1	± 3% (0.5 de	(a) ± 3	0/0		
<0.3	-	<5 / ± 0.1%	± 10% when >	1 ± 0.1	± 3% (0.5 de				
Well Condition	on Check			(circle appropr		1,000			
General Condi Protective Stee Well # Visible Well Cap:	ition: Goo	d / Needs Repa Cracked / Leaki	d PVC?: Y /O	None	Rust arou PVC Rise Concrete	umb?:	maged / M Cracked / nts / Ins	Leakinį sects / I	sous.

Comments:

lient/Project N	Name: CT	DOT Higganum	Maintenance & R	Repair Facility		A A				
roject Location	ı: Higganı	ım, CT	PROJECT	r #: 20160476	.A20		FUSS 8	O'NEIL		
ample#: 13	0517112	2-04	WELL I	WELL ID: ₩-25-1 ₺ D			. "			
Purge Data			•				Sampl			
Date: 11/22/17	SHOULD SEE THE SECOND					Container VOA	Quanti	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAME		
tart time: 0°	140	Stop time:					3	HCl		
Pump Rate: So (ml/m) Depth Sampled: 34 Ft Sampler: BSC/NV						Amber L	2	Ice		
					1 / x 1 x 1 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3					
otal time purge		7			C/NVD	P250	1 1	HNO3		
otal time purge		(ltr)				P250 P250 Amber L	1	Ice Ice		
otal time purge olume Purged: Purge Device: (1	Dedicated)	(ltr) / Nondedicated		Weather: OVer		P250		Ice		
Total time purge Volume Purged: Purge Device: (I Device Type: B	Dedicated)	(ltr) / Nondedicated Peristaltic) / Submo	ersible	Weather: OVer	east 40s	P250	1	Ice		
Total time purger Volume Purged: Purge Device: (I) Device Type: B Filtered? (N)	Dedicated ladder / (1	(ltr) / Nondedicated Peristatic / Submode. 10u / 0.45u I		Weather: Over	east 40s	P250	1	Ice		
Total time purged: Volume Purged: Purge Device: Device Type: B Filtered? Appearance: L	Dedicated ladder / ((ltr) / Nondedicated Peristatic / Submode. 10u / 0.45u I	ersible Filte red in: Field / PVC	Weather: Over	east 40s	P250		Ice		
Total time purged: Volume Purged: Purge Device: Device Type: B Filtered? Appearance: L	Dedicated ladder / (Filter Size) eqr., No	(ltr) / Nondedicated Peristatic / Submode. 10u / 0.45u I	ersible Filte red in: Field / PVC	Weather: Over	east 40s	P250	•	Ice		
otal time purge olume Purged: Purge Device: (I Device Type: B Filtered? (N/Y) Appearance: (Light)	Dedicated ladder / (Filter Size) eqr., No	(ltr) / Nondedicated Peristatic / Submode. 10u / 0.45u I	ersible Filterect in: Field / PVC / TPS	Weather: Over	east 40s	P250		Ice		
Total time purged: Purge Device: Device Type: B Filtered? Well Yield: Well Diameter:	Dedicated ladder / (Filter Size) eqr., No	(ltr) / Nondedicated Peristatic / Submode. 10u / 0.45u I	ersible "Hered In: Field / PVC TPS: DTB	Weather: Over	cast 40s	P250		Ice		
Total time purger Tolume Purged: Purge Device: Q Device Type: B Tiltered? N Appearance: C Well Yield: H Well Diameter: Comments:	Dedicated ladder / (In Pilter St.) Pilter St. Pilter St	(ltr) / Nondedicated Peristatic / Submode 104 / 0.454 I	ersible Thered in: Field / PVC TPS: DTB	Weather: Over	cast 40s	P250		Ice		
Cotal time purged: Colume Purged: Colume Purged: Colume Purged: Colume Purged: Colume Purged: Column Purged: Co	Dedicated ladder / (In Pilter St.) Pilter St. Pilter St	(ltr) / Nondedicated Peristatic / Submode: 10u / 0.45u F	Field	Weather: Over	Data	P250 Amber L		Ice Ice		
Total time purger Tolume Purged: Purge Device: Q Device Type: B Tiltered? N Appearance: C Well Yield: H Well Diameter: Comments:	Dedicated ladder / (In Pilter St.) Pilter St. Pilter St	(ltr) / Nondedicated Peristatic / Submode 104 / 0.454 I	ersible Thered in: Field / PVC TPS: DTB	Weather: Over	cast 40s	P250		Ice		
Cotal time purged: Colume Purged: Colume Purged: Colume Purged: Colume Purged: Colume Purged: Column Purged: Co	Dedicated ladder / (I Filter St.)	(ltr) / Nondedicated Peristatic / Submode. 10a / 0.45a F Oder rate / Low / Dry HF Sci# Turbidity	PVC TPS DTB	Weather: Over	Data Temp. (deg C)	P250 Amber L Specific Condu (uS)		Icc Icc		
otal time purged olume Purged Device: Device Type: Brittered? Device: Brittered? Device: Comments: Comments:	Dedicated ladder / (Filter St. eq. , No. of Mode.) / Mode.]	(ltr) / Nondedicated Peristatic / Submode: 10u / 0.45u For the control of the con	Field / Dissolved Oxygen (mg/L)	Weather: Over 12, 73 12, 93 36, 1	Data Temp. (deg C)	P250 Amber L Specific Condu (uS)		ORP(mV)		
Cotal time purged: Colume Purged: Course Device: Device Type: Be intered? Device Type: Be intered	Dedicated) ladder / (Pitter St. eqr., No. b) / Mode: 2 / / Time 0940	(ltr) / Nondedicated Peristatic / Submode	Field Published Oxygen (mg/L) PURGE 2.92	Weather: Over 12.73: 12.93: 36.1	Data Temp. (deg C) 12.8 12.6	P250 Amber L Specific Condu (uS)		ORP(mV) - 124.7 - 126.5		
Cotal time purged Volume Purged Device: (Device Type: Beritered? (Device Type: Beritered	Dedicated) ladder / (Interest State	(ltr) / Nondedicated Peristatic / Submoder Tect 10u / 0.45u F Tect / Low / Dry HF Sci# Turbidity (ntu) START 3.03	Field PUC TPS: DTB Field PVC TPS: DTB Field	Weather: Over 12, 73 12, 93 36, 1	Data Temp. (deg C)	P250 Amber L Specific Condu (uS)		ORP(mV)		

Water Level (ft)	Time	Turbidity (ntu)	Oxygen (mg/L)	pH (S.U.)	(deg C)	(uS)	ORP(mV)
12.72	0940	START	PURGE -				
2.79	1000	3.03	3,12	7.32	17.8	196,9	-124.7
2.78	1003	2.36	2.92	7.33	12.6	196.7	-120.5
12.78	1006	2.02	2.90	7.3	13.7	196.4	-121.4
	1010	SAMPLE	-				
	-						
			I	1	1		

± 3% (0.5 deg) <5 / ± 0.1% \pm 10% when > 1 < 0.3 (circle appropriate item(s), cross out if not applicable] Well Condition Checklist Is well plumb?: Y / N

Lock: Good / Broken / None

Rust around cap: Y / N

PVC Riser: Good / Damaged / None

Concrete collar: Ob / Cracked / Leaking / None

Other evidence of: Rodents / Insects / None

Curb Box: N / Y (key is: Hex / Pent / Other) General Condition: Good / Needs Repair Protective Steel: OK & Cracked / Leaking / Bent / Loose/ None Well # Visible?: Y/N Well Cap: Good / Broken / None Evidence of rain water between steel and PVC?: Y / N Evidence of ponding around well?: Y / N Gopher type holes around collar?: Y / Comments:

 ± 0.1

± 3%

lient/Project N	ame: CT D	OT Higganum l	Maintenance & Rej	pair Facility		A .	TICC	۰. O'	NEILL
roject Location	Higganun	n, CT	PROJECT	#: 20160476	A20	I I	U33	αO.	NEILL
ample#: 130)5171122	- 05	WELL ID): D-25	3				
Data Data							Samp	le Da	ta Preservativ
Purge Data Date: 11/22/17					213	Container VOA	Quan 3	tity	HCl
tart time:	1112	Stop time:	1212 Sam Depth S	11/10 11/11/11	136	Amber L	2		Ice
Pump Rate:	200			Sampler: BSC	SNVP	P250	1		HNO3
l'otal time purge		(00 (ltr)				P250	1		lce
Volume Purged:	Value of A		Y	Weather: 40	spain	Amber L			Ice
Purge Device: E	ladder / Pt	enstaltio / Subme	rsible		200 200 200 200 200 200 200 200 200 200				
45 ht / V/	Milton Same	. MOu 7 (1450 F	mercum, case,						
Appearance: b	- MONEON	- want	NOW I'V.	8-16					
Well Yield: (Ing	Moder:	ate / Low / Dry							
Well Diameter:	3"		(TIPE)						
Comments:	0		C. /						
			Fiel	d Parameter	Data				
Instrument II) #		AND						—
Cinco	, i	HF Sci# 7	YS1600#2		W1000000				
	17.55	Turbidity	Dissolved	pH (S.U.)	Temp.	Specific Condu (uS)	ictivity	Ol	RP(mV)
Water Level (ft) (TPS)	Time	(ntu)	Oxygen (mg/L)		(deg C)	(43)		_	
The second secon	The state of the state of	-			ART.			3	- 1
8.10	1112	-120 -	7 0114	10.02	15.8	670		-6	5.6
8.99	1122	589.7	7,04	1 7	15.7	62.		5	9.9
9.04	432	1016	0.07	6-30	15.7			17	4-3
9.05	1142	636-5	0-31	6-23	15.4	637		-	
			0-21	6-43	15.5	648	3		9-2
9.07	1152			6.52	15.5	653		2	5.3
9.07	1202	198.3	0-25	6.49	15.6	646		7	20.3
9.07	1212	196.7	0-25		60.6	- 700		2	
	1212	_	-	STOP			_		
	1213	4		sant	DIE				
	1013								
					11111111				
					4				
				1 +01	± 3% (0.5 de	(g) ± 3°	/o		
<0.3'			± 10% when >	1 ± 0.1	interitem(s) cro	ss out if not app			
Well Condit	ion Check	clist		(circle appropr	late Helli(s), ero	ME WATER TO THE PARTY OF			
Protective St Well # Visib	eel: O/O	09	ig / Delit / Diose/	None	Rust arou PVC Rise	umb?: Y / N od / Broken / ond cap:(Y) / N or: Good / Dam collar: OK / C dence of: Roden	aged / (Leaking	None

Client/Project Name: CT DOT Higganu	A A			
Project Location: Higganum, CT	PROJECT #: 20160476.A20	1	FUSS&O	'NEILL
Sample#: 1305171122- 06	WELL ID: W-25-3			
Purge Data			Sample D	ata
Date: 11/22/17		Container	Quantity	Preservativ
Start time: 1048 Stop time:	Sample time: 1118	VOA Amber L	3	HCl Ice
	Rate: AOO (ml/m) Depth Sampled: 16			
	Sampler: DSC/(NVI)	P250		
Total time purged: 30	Sampler: BSC/NVP	P250	1	Ice
Total time purged: 30 Volume Purged: 5 (ltr)	Weather: Overcast 40s	10.0000	9	Ice Ice
Total time purged: 30 Volume Purged: (ltr) Purge Device: Oedicated / Nondedicated Device Type: Bladder / Peristaltic / Sub-	Weather: Overcast 40s	P250	1	2.00
Total time purged: Volume Purged: Purge Device: Pedicated / Nondedicated Device Type: Bladder / Peristaltic / Sub- Filtered? N/Y Filter Size: 10a / 0.45a	Weather: Overcast 40s mersible Filtered in: Field/Lab	P250	•	2.00
Total time purged:	Weather: Overcast 40s mersible Filtered in: Field / Lab PVC: 12.28	P250	1	2.00
Total time purged: 30	Weather: Overcast 40s mersible Filtered in: Field / Lab PVC: 12.28	P250	•	2.00

Instrument	ID#

Testwell		HF Sci#	VS1600#1-				
Water Level (ft)	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	pH (S.U.)	Temp. (deg C)	Specific Conductivity (uS)	ORP(mV)
12.28	1048	START	PURGE -				
12.49	1108	3,52	0.58	5.77	14.0	574.4	-190.1
12.46	1111	2.79	0.87	5.76	14.0	573.9	-190,9
12.46	1114	2.68	0.84	5.76	14.0	575. a	- 190.3
2.46	1117	2.08	0.81	5.77	14.0	574.0	-189.9
	1118	Sample.					
<0.3			± 10% when > 1	± 0.1	± 3% (0.5 de	g) ± 3%	

(circle appropriate item(s), cross out if not applicable] Well Condition Checklist Is well plumb?: V / N

Lock: Good / Broken / None

Rust around cap: Y / N

PVC Riser: Good / Damaged / None

Concrete collar: OK / Cracked / Leaking / None

Other evidence of: Rodents / Insects / None

Curb Box: N / Y (key is: Hex / Pent / Other) General Condition: Good / Needs Repair
Protective Steel: ON / Cracked / Leaking / Bent / Loose / None
Well # Visible?: W / N
Well Cap: Good / Broken / None
Evidence of rain water between steel and PVC?: Y / N
Evidence of ponding around well?: Y / N
Gopher type holes around collar?: Y / N Comments:

Low Flow Sampling

Client/Project Name: CT DOT Higganum M	A A	
Project Location: Higganum, CT	PROJECT #: 20160476.A20	FUSS & O'NEILL
Sample#: 1305171122- 07	WELL ID: MW -1	

Purge Data Sample Data Date: 11/22/17 Container Quantity Preservative Start time: Stop time: Sample time: HCI VOA Pump Rate: (ml/m) Depth Sampled: Amber L Ice Total time purged: Sampler: P250 HNO3 P250 __(ltr) Volume Purged: Ice Purge Device: Dedicated / Nondedicated Weather: Amber L Ice Device Type: Bladder / Peristaltio / Submersible Filtered? N/Y Filter Size: 10u / 0.45u Filtered in: Field / Lab Appearance: Clear PVC: Well Yield: (ligh) Moderate / Low / Dry TPS: PCBs + Desticides Well Diameter: 2" DTB: Comments:

Field Parameter Data

Instrument ID#

cinco		HF Sci# 2	Y81 600 #2 -				-
Water Level (ft)	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	pH (S.U.)	Temp. (deg C)	Specific Conductivity (uS)	ORP(mV)
4.98	1240			- 80	ART		-3
5.08	1250	40.36	0.66	6-34	14.9	391.2	369.3
5.21	1300	36.82	0.63	6.36	15.1	396.6	369-6
5.22	1310	28-59	0.56	6-36	15.2	396.2	372.3
5.23	1320	24.41	0.55	6.37	15-3	396.8	374-0
5.23	1330	14.36	0-48	6-38	15-3	397.3	378-3
5.23	1340	8.37	0.47	6.30	15.3	399.2	377-1
5.23	1345	4.61	0.50	6.38	15.2	400.5	377-4
	1346	~	- 5	402	<		>
	1347	2	- 81	HIPE	- #		\rightarrow
*							
					10.5		

< 0.3 $<5 / \pm 0.1\% \pm 10\%$ when > 1 ± 0.1 ± 3% (0.5 deg) ± 3% Well Condition Checklist (circle appropriate item(s), cross out if not applicable]

General Condition: Good / Needs Repair

Protective Steel: OR / Cracked / Leaking / Bent / Loose/ None Well # Visible?: Y / Well Cap: Good / Broken / None

Evidence of rain water between steel and PVC? Y

Evidence of ponding around well?: Y / N

Gopher type holes around collar?: Y /(N)

Comments:

Is well plumb?: \(\sup \) N

Lock: Good / Broken / None

Rust around cap: (Y) N

PVC Riser Good / Damaged / None Concrete collar: OK / Cracked / Leaking / None

Other evidence of: Rodents / Insects / None

Curb Box: N / Y key is: (Hex / Pent / Other)

lient/Project N	Name: CT	DOT Higganun	n Maintenance & I	Repair Facility		MA :		
roject Location	n: Higgan	um, CT	PROJECT	Г #: 2016047	6.A20	FU FU	SS&O	'NEILL
ample#: 13	0517112	22-08	WELL I	D: 0 - 1	8			
urge Data							ample D	
Pate: 11/22/17 tart time:	135	Stop time:	1231 80	mple time:	7.37	VOA	Quantity 3	Preservativ
	200	(ml/m)		Sampled:	13 ++	Amber L	2	Ice
otal time purge	ed:5	14 min	1.34444 - 4.774450		SC/NVB	P250	īF	HNO3
olume Purged:		O . 3 (ltr)		Weather: Over	and you	P250	1	Ice
urge Device: (1	Dedicated)	/ Nondedicated	omible	Weather:	c45+ 705	Amber L	19 7	Ice
iltered? N/Y	Filter Siz	ze: (10u / 0.45u 1	ersible Filtered in: (Field)	Lab to 5			0	DOB
ppearance:	lear, n	o odor	PVC	: ldiel	6			ST.C.
Vell Yield: I ligh	Mode:	rate / Low / Dr			, F1			
Vell Diameter:	24		DTB	45.3	5			
omments:								
			Fiel	ld Parameter	Data	'		
nstrument ID	and the second s	Transciu i I	M(4) 00011 -					
Texture		HF Sci#	V81600#1 -		PRI CONTROL	0 10 0 1		
Water Level (ft)	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	pH (S.U.)	Temp. (deg C)	Specific Conductivity (uS)	OF	RP(mV)
12.26	1135	START	PURGE -					
12.45	1155	30.88	5.41	6.22	13.6	239.8	- 7	27.4
12.45	1272	22.89	4.25	6.12	13,6	306, 4		5.9
12.95			4.37	6110	13,6	326.9		15.7
	1778	18.70		6.15	13,5			
12.45	1931	18.33	4,62	6.14	13.5	354.7	~ 7	79.4
	1337	Sample						
							-	
						Λ.		
c0.23		-5 / + 0 10/	± 100/ 1 > 1	+01	+ 20/ /0 = 1	+ 20/		
<0.3° Vell Condition	Checkli		± 10% when > 1		\pm 3% (0.5 deg ate item(s), cross) ± 3% out if not applicable		
rotective Steel: Vell # Visible?: Vell Cap: Good Vidence of rain Vidence of pon	OK / C V / N)/ Broker water ber ding arou	1 70	(Bent) Loose/ N	None	PVC Riser: Concrete co Other evide	nb?: ② / N D / Broken / None I cap: Y / ② Good / Damaged / Ilar: ② / Cracked nce of: Rodents / In N / Y (key is: Hex /	/ Leaking / sects / Nor	ie

			I	Low Flow Sam	pling	5	
Client/Project	Name: C	Г DOT Higganu	m Maintenance &	Repair Facility		and the same of th	
Project Location	on: Higgan	ium, CT	PROJEC	CT #: 2016047	6.A20	FU	JSS&O'NEILL
Sample#: 1	30517112	22- 09	WELL	ID: MW	- FDZ		
Purge Data							Sample Data
Date: 11/22/17 Start time:	1417	Stop time:	11116			Container	Quantity Preservative
Pump Rate:	200				559	VOA	3 HCl
Total time purg	The second secon	32	Бера		SCYNVP	Amber L P250	2 Ice 1 FINO3
Volume Purgeo		(ltr)				P250	1 Ice
Purge Device:	Dedicated	/ Nondedicated Peristaltic / Subr	9.1	Weather: 40	s rain	Amber L	l Ice
Filtered? N/Y	Filter Si	ze: (100 / 0.45u		/ Lab			
Appearance:	Brow	n	PV	c:4.(08		
Well Yield: Hig	sh / Mode	rate / Low/ D	- Pro-		9		1 PCB
Well Diameter: Comments:	1.511		DT	B:	44		1 - 2
Comments.							
			Fie	ld Parameter	Data		
Instrument II) #	·	7.53		Data		
CINCO		HF Sci# Z	451600 # Z-				-
Water Level (ft)	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	pH (S.U.)	Temp. (deg C)	Specific Conductivit (uS)	ORP(mV)
4.60	1417			STAR	27		>
5.10	1427		4.02	759	13.9	780	353.14
	-	KAND	RY -		_		_
5.95	1437	705,9	3.60	7.50	14.4	756	312.5
6.26	1447	83.1	3.73	7.57	14.0	7.34	271.2
	1440	beele	an-	allow			
	*	Samo	1)	angl		harage.	
		of o		4			
5.64	1550	_		SAMPLA	3		3
	- 1						
				1			
			A STATE OF THE STA				
<0.3'			\pm 10% when $>$ 1		± 3% (0.5 deg)		
Well Condition	1 Checklis	st		(circle appropriat	re item(s), cross	out if not applicable	
General Conditi Protective Steel: Well # Visible?: Well Cap: Good	OR / Cr Y ON	acked / Leaking	/ Bent / Loose/ N	None	Rust around	/ Broken / None cap: Y / N	
Evidence of rain	water bets	/ None ween steel and P	VCP: Y / N		PVC Riser:	Good / Damaged / I	None / Latin (2)
Evidence of pon	ding arour	nd well?: Y /N	, 1 / (3)		Other evider	lar: OK / Cracked / nce of: Rodents / Ins	Leaking / None
Gopher type hole	es around	collar?: Y / 🕥			Curb Box: N	/ (Y) key is: Hex /	Pent / Other)
Comments:					The second of		PROCESSED TO SERVICE SERVICES

lient/Project N	ame: C1	DO1 Higganur	n Maintenance & R	A TRAIS AND CONTRACTOR AND AND AND	w)	A B	USSEC	O'NEILL
roject Location:	Higganu	ım, CT	PROJECT	#: 20160476	.A20	1	033 & (JINEILL
ample#: 130	5171122	2-10	WELL II	D: D.17				
Duran Data							Sample I	Data
Purge Data Date: 11/22/17						Container	Quantity	Preservative
tart time:	305	Stop time:_	1402 Sar	mpre time.	404	VOA	3 2	HCl Ice
	20 30C	(ml/m)		C. Service London	C/NVP	Amber L P250	1	F HNO3
Total time purge	d: 5	7 Min_ 1. 7 (ltr)				P250	î	Ice
olume Purged: Purge Device:	edicated)	/ Nondedicated		Weather: Over	cast 40s	Amber L	31	Ice
Device Type: Bl	adder / (Peristaltic / Subn	nersible	19 M			-	\ \
iltered? N/(Y)	Filter Siz	e: 10u/ 0.45u	Filtered in: Field / PVC:	Lab				Pestici
Appearance:	1 / Mode	rate / Low / D		15	1.62			Pesition
Vell Vield: Ulign Vell Diameter:	/ Wode	inte / Low / D	DTB		+			
Comments:								
			Fiel	d Parameter	Data			
Instrument ID	#							
	Ĭ	HF Sci#						
Water Level (ft)	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	pH (S.U.)	Temp. (deg C)	Specific Conduc (uS)	etivity	ORP(mV)
12.62	1305	START	PURGE -					
15.78	1350	31,97	0.89	Qu. 6, 33	12.6	313.5		175.2
15.78	1353	484.7	1.57	6.25	12.6	309.9	-	167.2
		215,2	1.61	6.33	12.6	309.5	-	72.8
15.76	1356			7.64	12.7	313.3		239.1
15.74	1359	42.85	0.43			313.9		128.7
15.74	1407	45.65	0-50	7.72	12.7	3,7	9	(00.7
	1404	Sample						
			20					
			- 4					
				101	± 20/ /0 = 1	± 3%		
<0.3' Well Conditio	n Charlet		\pm 10% when > 1	± 0.1	± 3% (0.5 de ate item(s), cro	ss out if not applic	cable]	
well Conditio	n Check	ust		(errete appropri	(7), -23			
Protective Steel Well # Visible? Well Cap: Goo	: 6K)/ : 9/ N d)/ Brok	en / None	r ng / Bent / Loose/	None	Lock: GC Rust arou PVC Rise Concrete	imb?: Y / N nd / Broken / No nd cap: Y / N r: Good / Damag collar: OK / Crac	ed None	ng / None
Evidence of po	nding aro	und well?: Y / d collar?: Y /	Q		Other evi Curb Box	dence of: Rodents (N) / Y (key is: 1	/ Insects / (Iex / Pent /	Other)

				Low Flow San	npling			
Client/Project	t Name: C	T DOT Higgan	um Maintenance &	c Repair Facility		- A		
Project Locati	on: Higga	num, CT	PROJEC	CT #: 2016047	76.A20	(FUSS&(O'NEILL
Sample#: 1	3051711	22-	WELL	ID: MW-	FOI			
Purge Data							Sample I	Data
Date: 11/22/17						Container	Quantity	Preservative
Start time: Pump Rate:	1505		1536 5	Sample time:	1537	VOA	3	HCl
Total time pur	ged:	30 (ml/m)	Dept	h Sampled:	50	Amber L	2	, Ice
Jolume Purge	d:	(ltr)		Sampler: (B	SCANVP	P250	1	F/HNO3
Purge Device:	Dedicated	/ Nondedicated		Weather: 40	srains	P250 Amber L	1	Ice
Giltered? N. /	Madder /	Peristaltic / Sub	nersible		-	- timber 17	1,	Ice
ppearance:	Somon	ze: (10u)/ 0.45u	Filtered in: Field	/ Lab C:				
Well Yield: (High	h / Mode	erate / Low / D	PVO TPS	S: 2,03	_			D PESTICI
Well Diameter:	1.5"	-wind o word in th	DT		9			,,
Comments:			3	, ,	,			
			Fie	eld Parameter	Data			
nstrument II) #		70.74					
cinco		HF Sci# 2	X61 600#2-					-
Water Level (ft)	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	pH (S.U.)	Temp. (deg C)	Specific Conduct (uS)	ivity	RP(mV)
1.81	1505	_		START			0	
1.83	1575	972.3	6.13	10.12	10.4	255.2		
1.84	1525	1068	8.60	10.16	9.6			225.0
	1535	815.4	8.96			246.7		30.2
	1536	- 0.1	0.16	10.17	9.4	242.0	1 1 5	24.1
		2		57	OP		\rightarrow	
	1537			SAM	PLE -		2	
					- 1			
						-		
		<5 / + 0.10/	± 100/					
		t	± 10% when > 1	± 0.1 ; (circle appropriate	± 3% (0.5 deg) e item(s), cross o	± 3% ut if not applicab	lel	
		Repair 'ing	Bent / Loose/ N		Is well plumb	P:(Y) N Broken / None		
		14	/C?:(()/		Rust around of PVC Riser: G Concrete colla Other evidence	ap: Y / N ood / Damaged r: OK / Cracked e of: Rodents / I	/ None / Leaking / I	
	\				Curb Box: N	/ Escy is: Hox	/ Pent / Othe	r)

Client/Project Name: CT DOT Higgan	um Maintenance & Repair Facility	
Project Location: Higganum, CT	PROJECT #: 20160476.A20	FUSS & O'NEILL
Sample#: 1305171122- 2	WELL ID.//w/~ (HMF-MW-2	

Purge Data Date: 11/22/17		Sample D	ata
Start time: 1435 Stop time: 1505 Sample time: 1506 Pump Rate: 350 (ml/m) Total time purged: 30 Volume Purged: 6 (ltr) Purge Device: Dedicated / Nondedicated Weather: 0/8/6/14 (1)	Container VOA Amber L P250 P250 Amber L	Quantity 3 2 1 1	Preservative HCl Ice HNO3 Ice Ice Ice
Device Type: Bladder / Peristaltic / Submersible Filtered?			

Field Parameter Data

Testwel	4	HF Sci#)	Y81600#1 -				
Water Level (ft)	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	pH (S.U.)	Temp. (deg C)	Specific Conductivity (uS)	ORP(mV)
5.64	1435	START	PURGE -				
6.05	1455	20.14	4.82	6.93	13.7	500,9	-154.2
6.05	1428	17.11	JUSTA 498.3	6.91	13.7	495.2	-152.8
6.05	1501	16.71	4,980	6.91	13.7	498.0	-151,7
6.05	1504	13.62	4.93	6.91	13.7	499.4	-150.1
	1506	Sample					
	1528	4.73	before Pass	O HNO3 SA	mple (no	need to filter)	
		1 -					

Well Condition Checklist (circle appropriate item(s), cross out if not applicable] General Condition: Good / Needs Repair

Protective Steel: OK / Cracked / Leaking / Bent / Loose/ None
Well # Visible?: Y / N

Well Cap: Good / Broken / None

Evidence of rain water between steel and PVC?: Y / N Is well plumb?: \(\text{\subset} / \ N \)

Lock: \(\text{Good} / \text{ Broken } / \text{None} \)

Rust around cap: \(Y / \text{N} \)

PVC Riser: \(\text{Good} / \text{ Damaged } / \text{None} \)

Concrete collar: \(\text{OK} / \text{ Cracked } / \text{ Leaking } / \text{None} \) Evidence of ponding around well?: Y / (N) Other evidence of: Rodents / Insects / None Curb Box: N / (key is: Ilex / Pent / Other) Gopher type holes around collar?: Y / N Comments:

 ± 0.1

± 3% (0.5 deg)

± 3%

 $<5 / \pm 0.1\% \pm 10\%$ when > 1

<0.3

				I	Low Flow Sam	pling			
С	lient/Pro	oject Name: (T DOT Higganu	ım Maintenance &	Repair Facility				
P	roject Lo	ocation: Higga	num, CT	PROJEC	CT #: 2016047	6.A20	The H	USS&C	D'NEILL
S	ample?	#: 1305171 1	122- 1	3 WELL	ID: MAN	OT PW-1			
P	urge D	Pata						Sample D	Nata
	ate: 11/2		11				Container	Quantity	Preservative
	art time:		stop time		ample time:	1641	VOA	3	HCl
	ımp Rate	purged:	(ml/m)	Depti	h Sampled: Un		Amber L	2	Ice
	olume Pu		(ltr)		Sampler: BS	CINVP	P250	1	F/HNO3
Pu	irge Dev	ice Dedicated	Nondedicated		Weather: LO	c min	- P250- P12© Amber L	1	Ice
D	evice Typ	oe: Bladder /	Peristaltic / Subr	nersible		, , , , ,	Amber 1.	'	Ice
Fi	ltered? N	/ (Y) Filter S	6ize: (10u/ 0.45u	Filtered in: Field	/ Lab				\
W	pearancell Vields	e:	erate / Low / D	PVC			_		* Pesticid
W	ell Diam	eter:	erate / Low / D	DT	S: COULD NO	T MEASUR	E		a Para
	mments		1		(A11)				
ce	uldn	of measur	e DIW NO	CINCO becau	ese tape AUT	kept auth	M.C		
	Stuc	k in wire	S/8tructure	Sinned Fie	ld Parameter	Data	3		
	strumer								
	CIN		HF Sci# 2	VS1600#7-					-
	Water L	evel Time	Turbidity	Dissolved	22 (2 22)	Temp.	Specific Conduct		
	(ft)	Time	(ntu)	Oxygen (mg/L)	pH (S.U.)	(deg C)	(uS)	OI	RP(mV)
	N.A	Λ.	A TAN	TE BOAG	ast	-31	37/5-25		
			Tolo		1	Ed.			
- 1		1641	154.9	BUTTARO	8-92	7	2 -		
		1641	184.7	1.98	0-12	10-7	182.7	28	88.2
-			(GRAB	SAMPLE;	DID NOT	PURGE)		
ŀ									
-									
-	-								
-	-								
_	< 0.3	,	<5 / ± 0.1%	± 10% when > 1	± 0.1	± 3% (0.5 deg)	± 3%		
We	ll Condi	tion Checkl					out if not applicab	lel	
Pro Wel Wel Evid Evid Gop	tective St I # Visib I Cap: G dence of dence of oher type	teel: OK / C le?: Y /O lood / Broke rain water be	n / None tween steel and P	/ Bent / Loose/ N		Is well plumb Lock: Good Rust around PVC Riser: Concrete coll Other eviden	P: Y / N / Broken / N cap: Y / N Good / Damaged ar: OK / Cracked ce of: Rodents / J	/ None 1 / Leaking / Insects / None	è
Con	nments:	noies around	collar?: Y / (N)			Curb Box:(N)/(ikey is: 168)	/ Pent / Otho	er)

			I	Low Flow Sar	npling	Log		
Client/Project	t Name: C	CT DOT Higgani	um Maintenance &	Repair Facility		0.4		
Project Location	on: Higga	inum, CT	PROJEC	CT #: 201604	76.A20		FUSS&C	'NEILL
Sample#: 1	3051711	122- 14	WELL	ID: /(\\\	HMF-MW-	1		
Purge Data							Sample D	ata
Date: 11/22/17 Start time:	1535	S	1600			Container	Quantity	Preservative
Pump Rate:		Stop time:_ (ml/m)		ample time:	1606	VOA	3	HCl
Total time purg	red:	30 (mi/m)	Depti	h Sampled:	12.	Amber L	2	Ice
Volume Purgeo	1:	6 (ltr)		Sampler:1	BSC/NVP)	P250	1	HNO3
Purge Device:	Dedicated)/ Nondedicated		Weather: 0 V	reast 40s	P250	1	Ice
Device Type: 1	Bladder /	Peristaltic) / Subr	nersible	Control of	103	Amber L	1	Ice
Filtered? N / Y	Filter S	ize: 10u / 0.45u	Filtered in: Field	/ Lab				TORO
Appearance:			PVC	c:9,	7-1			HUES
Well Yield: Hig	h)/ Mod	erate / Low / D			12			
Well Diameter: Comments:			DTI	B:		_		
Comments:								
			Fie	ld Paramete	r Data			
Instrument ID	- 4							
1-estuce	244	HF Sci#	481600H1-					-
Water Level (ft)	Time	Turbidity	Dissolved	pH (S.U.)	Temp.	Specific Conduc	tivity	
	I at a set	(ntu)	Oxygen (mg/L)	p11 (0.0.)	(deg C)	(uS)	OR	P(mV)
4.71	1535	START		7		9973		
4.79	1555	18.31	2.71	7.90	iu a		15	11.6
4.79	1558	15.26			11.	557,2		4.8
	-		2.62	7.88	14.9	559,1	-17	4.4
4.79	1601	17.87	2.53	7.89	14.7	563.2	-17	5.0
4.79	1604	11.55	2.52	7.88	17.7	561.9	-17	
	1606	Sample				30111	-17	×, 1
		4.89	before Ita	103 5 amp	le collecte	d (no need	Filter)	
						1 [1.1.(1)	
<0.3		45 / 1 0 40						
Well Condition	Checklis	<5 / ± 0.1%	± 10% when > 1	± 0.1 circle appropria	\pm 3% (0.5 deg)	± 3% out if not applical	al al	
General Conditio	n: Good	V Needs Ranais	,		NO. 200 D. D.		ne j	
rotective Steel: (OK / Cr	acked / Leaking	Bent / Loose/ No	one	Is well plumb	P: (V / N	_	
en # visible::	Y)/N		John / Louse/ IN	OHE	Rust assumd	/ Broken / None		
Vell Cap: Good	Broken	/ None			Rust around	iood / Damaged	7 N	
vidence of rain	water bet	ween steel and PV	(C?: Y /(N)		Concrete coll	ar: OK)/ Cracket	/ None 1 / Lookies / N	C11207
vidence of pond	ling arour	nd well?: Y /(N)		Other evidence	ce of: Rodents /	Insects / None	,
opher type hole	s around	collar?: Y /(N)			Curb Box: N	/ (key is: (Hex	Pent / Other	
mments:		. /(1)			Curb Box: N	/ (Y)(key is: (Hex	/ Pent / Other)	

				Low Flow Sar		-og			
Client/Project	Name: C	T DOT Higganu	ım Maintenance &	Repair Facility					
Project Location	on: Higga	num, CT	PROJEC	CT #: 201604	76.A20	(FUSS	S&O	'NEILL
Sample#: 1.	3051711	22- 16	WELL	ID: D - 8					
Purge Data Date: 11/22/17								ple Da	ıta
Start time: Pump Rate: Total time purge Volume Purged Purge Device: Device Type: Filtered? N/V Appearance:	Dedicated Hadder / Filter Si	Nondedicated	Depti nersible Filtered in: Field	Weather:_6∨€ / Lab C: 14, 4 S: 14,	62	Container VOA Amber L P250 P250 Amber L	3	F	Preservative HCl Ice HNO3 F Ice Ice
Instrument ID	.44		Fie	eld Paramete	r Data				
Instrument 1D	<u>"</u>	HF Sci#	-				-		_
Water Level (ft)	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	pH (S.U.)	Temp. (deg C)	Specific Conduct (uS)	ivity	ORF	P(mV)
15,02	1650 1710 1713 1716 1718	START 30,60 29,66 23,46 Sample	4.14	6, 30 6, 39	13.6	1076 1060 1051		-14C -131	
	1750	16,36							
<0.3' Well Condition	Checklis	<5 / ± 0.1% :	± 10% when > 1	± 0.1 (circle appropria	± 3% (0.5 deg) te item(s), cross o	± 3% ut if not applicab	le]		
General Condition Protective Steel: (Well # Visible?: (Well Cap: Good) Evidence of rain v Evidence of pond Gopher type holes Comments:	OK / Cr O/ N / Broken water bety ing aroun	/ None / None veen steel and PV d well?: Y / N	/ Bent / Loose/ N	ione	Rust around of PVC Riser: G Concrete colla Other evidence	Broken / None	/ None / Leak	None	one

Appendix C

Laboratory Reports (on CD)

Wednesday, November 22, 2017

Attn: Ms. Stephanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Sample ID#s: BZ41805 - BZ41809

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618

MA Lab Registration #M-CT007
ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 22, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/14/1715:40Location Code:F&OReceived by:B11/14/1717:50

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ41805

Phoenix ID: BZ41805

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171114-01

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.44	0.44	mg/Kg	1	11/16/17	MA	SW6010C
Arsenic	3.93	0.89	mg/Kg	1	11/16/17	MA	SW6010C
Barium	71.9	0.44	mg/Kg	1	11/16/17	MA	SW6010C
Cadmium	0.63	0.44	mg/Kg	1	11/16/17	MA	SW6010C
Chromium	25.3	0.44	mg/Kg	1	11/16/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/16/17	RS	SW7471B
Lead	60.9	0.44	mg/Kg	1	11/16/17	MA	SW6010C
Selenium	< 1.8	1.8	mg/Kg	1	11/16/17	MA	SW6010C
Percent Solid	73		%		11/14/17	Q	SW846-%Solid
Soil Extraction SVOA PAH	Completed				11/16/17	JJ/CKV	SW3545A
Extraction of CT ETPH	Completed				11/15/17	AA/VCK	SW3545A
Mercury Digestion	Completed				11/16/17	W/W	SW7471B
Total Metals Digest	Completed				11/15/17	B/AG	SW3050B
TPH by GC (Extractable	Products	s)					
Ext. Petroleum H.C. (C9-C36)	540	67	mg/Kg	1	11/20/17	JRB	CTETPH 8015D
Identification	**		mg/Kg	1	11/20/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	117		%	1	11/20/17	JRB	50 - 150 %
Polynuclear Aromatic H	HC						
2-Methylnaphthalene	ND	180	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Acenaphthene	ND	180	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Acenaphthylene	600	180	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Anthracene	380	180	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Benz(a)anthracene	1200	180	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Benzo(a)pyrene	1500	180	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	1500	180	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
(-)			5 5				,

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171114-01

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Benzo(ghi)perylene	1100	180	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	1200	180	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Chrysene	1500	180	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	190	180	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Fluoranthene	2600	180	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Fluorene	ND	180	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	1300	180	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Naphthalene	ND	180	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Phenanthrene	900	180	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Pyrene	2600	180	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	59		%	10	11/16/17	DD	30 - 130 %
% Nitrobenzene-d5	61		%	10	11/16/17	DD	30 - 130 %
% Terphenyl-d14	61		%	10	11/16/17	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2017

Reviewed and Released by: Ethan Lee, Project Manager

Phoenix I.D.: BZ41805

^{**}Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C12 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 22, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

see "By" below

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/14/1716:00Location Code:F&OReceived by:B11/14/1717:50

Analyzed by:

Rush Request: Standard

P.O.#: 20160476.A20

_aboratory Data

SDG ID: GBZ41805

Phoenix ID: BZ41806

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171114-02

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.35	0.35	mg/Kg	1	11/16/17	MA	SW6010C
Arsenic	2.32	0.33	mg/Kg	1	11/16/17	MA	SW6010C
Barium	45.3	0.35	mg/Kg	1	11/16/17	MA	SW6010C
Cadmium	< 0.35	0.35	mg/Kg	1	11/16/17	MA	SW6010C
Chromium	17.0	0.35	mg/Kg	1	11/16/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/16/17	RS	SW7471B
Lead	28.0	0.35	mg/Kg	1	11/16/17	MA	SW6010C
Selenium	< 1.4	1.4	mg/Kg	1	11/16/17	MA	SW6010C
Percent Solid	85		%		11/14/17	Q	SW846-%Solid
Soil Extraction SVOA PAH	Completed				11/15/17		SW3545A
Extraction of CT ETPH	Completed				11/15/17		SW3545A
Mercury Digestion	Completed				11/16/17		
Total Metals Digest	Completed				11/15/17	B/AG	SW3050B
TPH by GC (Extractable	e Product	s)					
Ext. Petroleum H.C. (C9-C36)	ND	290	mg/Kg	5	11/16/17	JRB	CTETPH 8015D
dentification	ND		mg/Kg	5	11/16/17	JRB	CTETPH 8015D
utninicalion							
				-			
QA/QC Surrogates	115		%	5	11/16/17	JRB	50 - 150 %
QA/QC Surrogates % n-Pentacosane					11/16/17	JRB	50 - 150 %
QA/QC Surrogates % n-Pentacosane Polynuclear Aromatic I		150			11/16/17 11/16/17	JRB DD	50 - 150 % SW8270D (SIM)
QA/QC Surrogates % n-Pentacosane Polynuclear Aromatic I 2-Methylnaphthalene	HC	150 150	%	5			
QA/QC Surrogates % n-Pentacosane Polynuclear Aromatic I 2-Methylnaphthalene Acenaphthene	HC ND		% ug/Kg	5	11/16/17	DD	SW8270D (SIM)
QA/QC Surrogates % n-Pentacosane Polynuclear Aromatic I 2-Methylnaphthalene Acenaphthene Acenaphthylene	HC ND ND	150	% ug/Kg ug/Kg	5 10 10	11/16/17 11/16/17	DD DD	SW8270D (SIM) SW8270D (SIM)
QA/QC Surrogates % n-Pentacosane Polynuclear Aromatic I 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene	ND ND ND 840	150 150	% ug/Kg ug/Kg ug/Kg	5 10 10 10	11/16/17 11/16/17 11/16/17	DD DD DD	SW8270D (SIM) SW8270D (SIM) SW8270D (SIM)
QA/QC Surrogates % n-Pentacosane Polynuclear Aromatic I 2-Methylnaphthalene Acenaphthene Acenaphthylene	ND ND 840 680	150 150 150	% ug/Kg ug/Kg ug/Kg ug/Kg	5 10 10 10	11/16/17 11/16/17 11/16/17 11/16/17	DD DD DD	SW8270D (SIM) SW8270D (SIM) SW8270D (SIM) SW8270D (SIM)

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171114-02

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Benzo(ghi)perylene	2400	150	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	3000	150	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Chrysene	3300	150	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	400	150	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Fluoranthene	5600	150	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Fluorene	230	150	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	2800	150	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Naphthalene	ND	150	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Phenanthrene	2400	150	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Pyrene	5400	150	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	43		%	10	11/16/17	DD	30 - 130 %
% Nitrobenzene-d5	43		%	10	11/16/17	DD	30 - 130 %
% Terphenyl-d14	44		%	10	11/16/17	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2017

Reviewed and Released by: Ethan Lee, Project Manager

Phoenix I.D.: BZ41806

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 22, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

 Sample Information
 Custody Information
 Date
 Time

 Matrix:
 SOIL
 Collected by:
 11/14/17
 16:20

 Location Code:
 F&O
 Received by:
 B
 11/14/17
 17:50

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

<u>aboratory Data</u> SDG ID: GBZ41805

Phoenix ID: BZ41807

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171114-03

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
	< 0.38				11/16/17		SW6010C
Silver		0.38	mg/Kg	1		MA	
Arsenic	< 0.75	0.75	mg/Kg	1	11/16/17	MA	SW6010C
Barium	18.4	0.38	mg/Kg	1	11/16/17	MA	SW6010C
Cadmium	< 0.38	0.38	mg/Kg	1	11/16/17	MA	SW6010C
Chromium	3.88	0.38	mg/Kg	1	11/16/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/16/17	RS	SW7471B
Lead	9.96	0.38	mg/Kg	1	11/16/17	MA	SW6010C
Selenium	< 1.5	1.5	mg/Kg	1	11/16/17	MA	SW6010C
Percent Solid	81		%		11/14/17	Q	SW846-%Solid
Soil Extraction SVOA PAH	Completed				11/15/17	JJ/CKV	SW3545A
Extraction of CT ETPH	Completed				11/15/17	AA/VCK	SW3545A
Mercury Digestion	Completed				11/16/17	W/W	SW7471B
Total Metals Digest	Completed				11/15/17	B/AG	SW3050B
TPH by GC (Extractable	e Product	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	60	mg/Kg	1	11/16/17	JRB	CTETPH 8015D
dentification	ND		mg/Kg	1	11/16/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	73		%	1	11/16/17	JRB	50 - 150 %
Polynuclear Aromatic H	НС						
2-Methylnaphthalene	ND	160	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Acenaphthene	ND	160	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Acenaphthylene	210	160	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Anthracene	430	160	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Benz(a)anthracene	1100	160	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Benzo(a)pyrene	1100	160	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	870	160	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
• •							

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171114-03

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Benzo(ghi)perylene	830	160	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	1200	160	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Chrysene	1400	160	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	160	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Fluoranthene	2700	160	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Fluorene	ND	160	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	900	160	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Naphthalene	ND	160	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Phenanthrene	1500	160	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Pyrene	2500	160	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	54		%	10	11/15/17	DD	30 - 130 %
% Nitrobenzene-d5	49		%	10	11/15/17	DD	30 - 130 %
% Terphenyl-d14	54		%	10	11/15/17	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2017

Reviewed and Released by: Ethan Lee, Project Manager

Phoenix I.D.: BZ41807

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 22, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

 Sample Information
 Custody Information
 Date
 Time

 Matrix:
 SOIL
 Collected by:
 11/14/17
 16:30

 Location Code:
 F&O
 Received by:
 B
 11/14/17
 17:50

Rush Request: Standard Analyzed by:

P.O.#: 20160476.A20

<u>aboratory Data</u> SDG ID: GBZ41805

see "By" below

Phoenix ID: BZ41808

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

RI/

Client ID: 1305171114-04

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.52	0.52	mg/Kg	1	11/16/17	MA	SW6010C
Arsenic	1.8	1.0	mg/Kg	1	11/16/17	MA	SW6010C
Barium	27.2	0.52	mg/Kg	1	11/16/17	MA	SW6010C
Cadmium	0.54	0.52	mg/Kg	1	11/16/17	MA	SW6010C
Chromium	5.25	0.52	mg/Kg	1	11/16/17	MA	SW6010C
Mercury	< 0.04	0.04	mg/Kg	1	11/16/17	RS	SW7471B
Lead	32.5	0.52	mg/Kg	1	11/16/17	MA	SW6010C
Selenium	< 2.1	2.1	mg/Kg	1	11/16/17	MA	SW6010C
Percent Solid	69		%		11/14/17	Q	SW846-%Solid
Soil Extraction SVOA PAH	Completed				11/15/17	JJ/CKV	SW3545A
Extraction of CT ETPH	Completed				11/15/17	AA/VCK	SW3545A
Mercury Digestion	Completed				11/16/17	W/W	SW7471B
Total Metals Digest	Completed				11/15/17	B/AG	SW3050B
TPH by GC (Extractable	e Products						
Identification	110 **	72	mg/Kg mg/Kg	1	11/16/17 11/16/17	JRB JRB	CTETPH 8015D CTETPH 8015D
Identification QA/QC Surrogates		72	0 0			-	
Identification QA/QC Surrogates % n-Pentacosane Polynuclear Aromatic I	** 83 HC	72	mg/Kg	1	11/16/17	JRB	CTETPH 8015D
Identification QA/QC Surrogates % n-Pentacosane Polynuclear Aromatic I	**	72 380	mg/Kg	1	11/16/17	JRB	CTETPH 8015D
Identification QA/QC Surrogates % n-Pentacosane Polynuclear Aromatic I 2-Methylnaphthalene	** 83 HC ND ND	380 380	mg/Kg % ug/Kg ug/Kg	1 1 20 20	11/16/17 11/16/17 11/16/17 11/16/17	JRB JRB DD DD	CTETPH 8015D 50 - 150 % SW8270D (SIM) SW8270D (SIM)
Identification QA/QC Surrogates % n-Pentacosane Polynuclear Aromatic I 2-Methylnaphthalene Acenaphthene	** 83 HC ND	380	mg/Kg % ug/Kg ug/Kg ug/Kg	1 1 20	11/16/17 11/16/17 11/16/17	JRB JRB DD	CTETPH 8015D 50 - 150 % SW8270D (SIM)
Identification QA/QC Surrogates % n-Pentacosane Polynuclear Aromatic I 2-Methylnaphthalene Acenaphthene Acenaphthylene	** 83 HC ND ND	380 380	mg/Kg % ug/Kg ug/Kg ug/Kg ug/Kg	1 1 20 20	11/16/17 11/16/17 11/16/17 11/16/17	JRB JRB DD DD	CTETPH 8015D 50 - 150 % SW8270D (SIM) SW8270D (SIM)
Identification QA/QC Surrogates % n-Pentacosane Polynuclear Aromatic I 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene	** 83 HC ND ND ND ND	380 380 380	mg/Kg % ug/Kg ug/Kg ug/Kg	1 1 20 20 20	11/16/17 11/16/17 11/16/17 11/16/17	JRB JRB DD DD DD	CTETPH 8015D 50 - 150 % SW8270D (SIM) SW8270D (SIM) SW8270D (SIM)
Ext. Petroleum H.C. (C9-C36) Identification QA/QC Surrogates % n-Pentacosane Polynuclear Aromatic I 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	** 83 HC ND ND ND ND ND	380 380 380 380	mg/Kg % ug/Kg ug/Kg ug/Kg ug/Kg	1 1 20 20 20 20 20	11/16/17 11/16/17 11/16/17 11/16/17 11/16/17	JRB JRB DD DD DD DD	CTETPH 8015D 50 - 150 % SW8270D (SIM) SW8270D (SIM) SW8270D (SIM) SW8270D (SIM)

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171114-04

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Benzo(ghi)perylene	ND	380	ug/Kg	20	11/16/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	410	380	ug/Kg	20	11/16/17	DD	SW8270D (SIM)
Chrysene	450	380	ug/Kg	20	11/16/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	380	ug/Kg	20	11/16/17	DD	SW8270D (SIM)
Fluoranthene	780	380	ug/Kg	20	11/16/17	DD	SW8270D (SIM)
Fluorene	ND	380	ug/Kg	20	11/16/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	380	ug/Kg	20	11/16/17	DD	SW8270D (SIM)
Naphthalene	ND	380	ug/Kg	20	11/16/17	DD	SW8270D (SIM)
Phenanthrene	390	380	ug/Kg	20	11/16/17	DD	SW8270D (SIM)
Pyrene	710	380	ug/Kg	20	11/16/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	54		%	20	11/16/17	DD	30 - 130 %
% Nitrobenzene-d5	47		%	20	11/16/17	DD	30 - 130 %
% Terphenyl-d14	53		%	20	11/16/17	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2017

Reviewed and Released by: Ethan Lee, Project Manager

Phoenix I.D.: BZ41808

^{**}Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C9 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 22, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

> Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information Custody Information Date <u>Time</u> Collected by: 11/14/17 Matrix: SOIL 16:40 Received by: F&O В 11/14/17 17:50 **Location Code:** see "By" below

Rush Request: Analyzed by: Standard

20160476.A20 P.O.#:

_aboratory Data

SDG ID: GBZ41805 Phoenix ID: BZ41809

CT DOT HIGGANUM MAINTENANCE FACILITY Project ID:

Client ID: 1305171114-05

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.38	0.38	mg/Kg	1	11/16/17	MA	SW6010C
Arsenic	< 0.76	0.76	mg/Kg	1	11/16/17	MA	SW6010C
Barium	15.1	0.38	mg/Kg	1	11/16/17	MA	SW6010C
Cadmium	< 0.38	0.38	mg/Kg	1	11/16/17	MA	SW6010C
Chromium	4.00	0.38	mg/Kg	1	11/16/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/16/17	RS	SW7471B
_ead	7.65	0.38	mg/Kg	1	11/16/17	MA	SW6010C
Selenium	< 1.5	1.5	mg/Kg	1	11/16/17	MA	SW6010C
Percent Solid	89		%		11/14/17	Q	SW846-%Solid
Soil Extraction SVOA PAH	Completed				11/15/17	JJ/CKV	SW3545A
Extraction of CT ETPH	Completed				11/15/17	AA/VCK	SW3545A
Mercury Digestion	Completed				11/16/17	W/W	SW7471B
otal Metals Digest	Completed				11/15/17	B/AG	SW3050B
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	280	mg/Kg	5	11/16/17	JRB	CTETPH 8015D
dentification	ND		mg/Kg	5	11/16/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	73		%	5	11/16/17	JRB	50 - 150 %
Polynuclear Aromatic I	<u>+C</u>						
2-Methylnaphthalene	ND	150	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Acenaphthene	ND	150	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Acenaphthylene	160	150	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Anthracene	170	150	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Alluliacelle							
Benz(a)anthracene	530	150	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
	530 590	150 150	ug/Kg ug/Kg	10 10	11/15/17 11/15/17	DD DD	SW8270D (SIM) SW8270D (SIM)

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171114-05

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Benzo(ghi)perylene	450	150	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	580	150	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Chrysene	720	150	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	150	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Fluoranthene	1200	150	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Fluorene	ND	150	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	480	150	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Naphthalene	ND	150	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Phenanthrene	550	150	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
Pyrene	1200	150	ug/Kg	10	11/15/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	54		%	10	11/15/17	DD	30 - 130 %
% Nitrobenzene-d5	48		%	10	11/15/17	DD	30 - 130 %
% Terphenyl-d14	54		%	10	11/15/17	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 22, 2017

Reviewed and Released by: Ethan Lee, Project Manager

Phoenix I.D.: BZ41809

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

November 22, 2017

QA/QC Data

SDG I.D.: GBZ41805

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	Rec Limits	RPD Limits	
QA/QC Batch 409829 (mg/kg),	QC Sam	ple No:	BZ4180	5 (BZ418	305, BZ	41806,	BZ4180	7, BZ4	1808, E	3Z4180	9)			
Mercury - Soil	BRL	0.03	< 0.03	< 0.03	NC	84.8	89.2	5.1	101			70 - 130	30	
Comment:														
Additional Mercury criteria: LCS a	cceptanc	e range f	or waters	is 80-120	% and fo	or soils i	s 70-130°	%. MS a	cceptar	ice range	is 75-1	25%.		
QA/QC Batch 409754 (mg/kg),	QC Sam	nple No:	BZ4201	4 (BZ418	305, BZ	41806,	BZ4180	7, BZ4	1808, E	3Z4180	9)			
ICP Metals - Soil														
Arsenic	BRL	0.66	3.01	2.56	NC	79.8			86.4			75 - 125	30	
Barium	BRL	0.33	91.4	58.6	43.7	82.3			75.0			75 - 125	30	r
Cadmium	BRL	0.33	< 0.38	< 0.45	NC	81.1			88.8			75 - 125	30	
Chromium	BRL	0.33	11.3	11.2	0.90	82.4			94.6			75 - 125	30	
Lead	BRL	0.33	12.2	9.71	22.7	78.8			91.7			75 - 125	30	
Selenium	BRL	1.3	<1.5	<1.8	NC	79.7			75.2			75 - 125	30	
Silver	BRL	0.33	<0.38	< 0.45	NC	76.6			94.2			75 - 125	30	

r = This parameter is outside laboratory RPD specified recovery limits.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

% Nitrobenzene-d5

% Terphenyl-d14

Comment:

November 22, 2017

QA/QC Data

SDG I.D.: GBZ41805

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 409698 (ug/kg), Q	C Sam	ole No: BZ41426 10X (BZ41806)								
Polynuclear Aromatic HC	Soil									
2-Methylnaphthalene	ND	130	58	54	7.1	55	60	8.7	30 - 130	30
Acenaphthene	ND	130	73	68	7.1	64	72	11.8	30 - 130	30
Acenaphthylene	ND	130	69	65	6.0	61	68	10.9	30 - 130	30
Anthracene	ND	130	71	69	2.9	63	72	13.3	30 - 130	30
Benz(a)anthracene	ND	130	63	60	4.9	55	64	15.1	30 - 130	30
Benzo(a)pyrene	ND	130	65	62	4.7	56	65	14.9	30 - 130	30
Benzo(b)fluoranthene	ND	130	64	59	8.1	55	63	13.6	30 - 130	30
Benzo(ghi)perylene	ND	130	63	59	6.6	56	61	8.5	30 - 130	30
Benzo(k)fluoranthene	ND	130	71	68	4.3	62	69	10.7	30 - 130	30
Chrysene	ND	130	68	62	9.2	57	67	16.1	30 - 130	30
Dibenz(a,h)anthracene	ND	130	65	61	6.3	56	62	10.2	30 - 130	30
Fluoranthene	ND	130	68	64	6.1	63	74	16.1	30 - 130	30
Fluorene	ND	130	72	68	5.7	63	70	10.5	30 - 130	30
Indeno(1,2,3-cd)pyrene	ND	130	60	57	5.1	54	59	8.8	30 - 130	30
Naphthalene	ND	130	60	56	6.9	57	63	10.0	30 - 130	30
Phenanthrene	ND	130	63	60	4.9	60	68	12.5	30 - 130	30
Pyrene	ND	130	70	65	7.4	64	74	14.5	30 - 130	30
% 2-Fluorobiphenyl	59	%	68	64	6.1	60	66	9.5	30 - 130	30

69

71

62

67

10.7

5.8

65

64

71

68

8.8

30 - 130

30 - 130

30

30

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 409697 (ug/kg), QC Sample No: BZ41848 10X (BZ41807, BZ41808, BZ41809)

%

%

60

65

27/20 Bater 107077 (ag/kg), 20 Sample 140. B211010 10X (B211007, B211007)												
Polynuclear Aromatic I	<u> IC - Soil</u>											
2-Methylnaphthalene	ND	130		53	52	1.9	50	56	11.3	30 - 130	30	
Acenaphthene	ND	130		68	66	3.0	61	69	12.3	30 - 130	30	
Acenaphthylene	ND	130		62	59	5.0	56	62	10.2	30 - 130	30	
Anthracene	ND	130		68	65	4.5	61	69	12.3	30 - 130	30	
Benz(a)anthracene	ND	130		57	55	3.6	51	57	11.1	30 - 130	30	
Benzo(a)pyrene	ND	130		65	62	4.7	58	65	11.4	30 - 130	30	
Benzo(b)fluoranthene	ND	130		58	55	5.3	51	58	12.8	30 - 130	30	
Benzo(ghi)perylene	ND	130		62	58	6.7	54	60	10.5	30 - 130	30	
Benzo(k)fluoranthene	ND	130		75	71	5.5	66	74	11.4	30 - 130	30	
Chrysene	ND	130		70	66	5.9	62	70	12.1	30 - 130	30	
Dibenz(a,h)anthracene	ND	130		63	60	4.9	56	63	11.8	30 - 130	30	
Fluoranthene	ND	130		60	58	3.4	55	62	12.0	30 - 130	30	
Fluorene	ND	130		64	63	1.6	59	67	12.7	30 - 130	30	
Indeno(1,2,3-cd)pyrene	ND	130		54	52	3.8	50	54	7.7	30 - 130	30	
Naphthalene	ND	130		56	55	1.8	54	60	10.5	30 - 130	30	
Phenanthrene	ND	130		60	58	3.4	55	61	10.3	30 - 130	30	

QA/QC Data

SDG I.D.: GBZ41805

% % Blk LCSD **RPD** LCS LCS MS MSD MS Rec % RPD Blank RL % % % **RPD** Limits Limits Parameter ND 130 Pyrene 61 60 1.7 55 63 13.6 30 - 130 30 % 2-Fluorobiphenyl 64 % 60 8.0 57 65 30 - 130 30 65 13.1 % Nitrobenzene-d5 54 % 58 56 3.5 54 61 12.2 30 - 130 30 % 30 - 130 % Terphenyl-d14 65 65 63 3.1 58 67 14 4 30 Comment: Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%) QA/QC Batch 409702 (mg/Kg), QC Sample No: BZ42307 (BZ41807, BZ41808, BZ41809)

TPH by GC (Extractable Products) - Soil

Ext. Petroleum H.C. (C9-C36)	ND	50	93	94	1.1	94	94	0.0	60 - 120	30
% n-Pentacosane	79	%	77	81	5.1	74	83	11.5	50 - 150	30

Comment:

Additional surrogate criteria: LCS acceptance range is 60-120% MS acceptance range 50-150%. The ETPH/DRO LCS has been normalized based on the alkane calibration.

QA/QC Batch 409703 (mg/Kg), QC Sample No: BZ42315 (BZ41805, BZ41806)

TPH by GC (Extractable Products) - Soil

Ext. Petroleum H.C. (C9-C36)	ND	50	92	91	1.1	95	88	7.7	60 - 120	30
% n-Pentacosane	70	%	75	80	6.5	77	74	4.0	50 - 150	30
Comment:										

Additional surrogate criteria: LCS acceptance range is 60-120% MS acceptance range 50-150%. The ETPH/DRO LCS has been normalized based on the alkane calibration.

QA/QC Batch 409918 (ug/kg), QC Sample No: BZ42326 10X (BZ41805)

Polynuclear Aromatic HC - Soil

2-Methylnaphthalene	ND	130	56	58	3.5	58	30 - 130	30
Acenaphthene	ND	130	69	72	4.3	65	30 - 130	30
Acenaphthylene	ND	130	66	71	7.3	64	30 - 130	30
Anthracene	ND	130	70	74	5.6	63	30 - 130	30
Benz(a)anthracene	ND	130	62	65	4.7	57	30 - 130	30
Benzo(a)pyrene	ND	130	63	68	7.6	55	30 - 130	30
Benzo(b)fluoranthene	ND	130	59	61	3.3	50	30 - 130	30
Benzo(ghi)perylene	ND	130	58	59	1.7	45	30 - 130	30
Benzo(k)fluoranthene	ND	130	69	74	7.0	59	30 - 130	30
Chrysene	ND	130	64	67	4.6	58	30 - 130	30
Dibenz(a,h)anthracene	ND	130	64	64	0.0	56	30 - 130	30
Fluoranthene	ND	130	66	66	0.0	57	30 - 130	30
Fluorene	ND	130	67	73	8.6	63	30 - 130	30
Indeno(1,2,3-cd)pyrene	ND	130	60	61	1.7	52	30 - 130	30
Naphthalene	ND	130	57	57	0.0	59	30 - 130	30
Phenanthrene	ND	130	60	60	0.0	55	30 - 130	30
Pyrene	ND	130	65	69	6.0	57	30 - 130	30
% 2-Fluorobiphenyl	62	%	63	68	7.6	62	30 - 130	30
% Nitrobenzene-d5	60	%	68	64	6.1	71	30 - 130	30
% Terphenyl-d14	70	%	68	71	4.3	61	30 - 130	30

Comment:

MSD notreported for this batch.

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Data

SDG I.D.: GBZ41805

% RPD % Blk LCS LCSD LCS MS MSD MS Rec Blank RL % % RPD % % RPD Limits Limits Parameter

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

November 22, 2017

Wednesday, November 22, 2017 Criteria: CT: GAM, RC

Sample Criteria Exceedances Report GBZ41805 - FO

State: CT

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BZ41805	\$8100SIMSM	Indeno(1,2,3-cd)pyrene	CT / RSR DEC RES (mg/kg) / APS Organics	1300	180	1000	1000	ug/Kg
BZ41805	\$8100SIMSM	Benzo(a)pyrene	CT / RSR DEC RES (mg/kg) / Semivolatiles	1500	180	1000	1000	ug/Kg
BZ41805	\$8100SIMSM	Benzo(b)fluoranthene	CT / RSR DEC RES (mg/kg) / Semivolatiles	1500	180	1000	1000	ug/Kg
BZ41805	\$8100SIMSM	Benz(a)anthracene	CT / RSR DEC RES (mg/kg) / Semivolatiles	1200	180	1000	1000	ug/Kg
BZ41805	\$8100SIMSM	Benzo(ghi)perylene	CT / RSR GA,GAA (mg/kg) / APS Organics	1100	180	1000	1000	ug/Kg
BZ41805	\$8100SIMSM	Indeno(1,2,3-cd)pyrene	CT / RSR GA,GAA (mg/kg) / APS Organics	1300	180	1000	1000	ug/Kg
BZ41805	\$8100SIMSM	Chrysene	CT / RSR GA,GAA (mg/kg) / APS Organics	1500	180	1000	1000	ug/Kg
BZ41805	\$8100SIMSM	Benz(a)anthracene	CT / RSR GA,GAA (mg/kg) / Semivolatiles	1200	180	1000	1000	ug/Kg
BZ41805	\$8100SIMSM	Benzo(a)pyrene	CT / RSR GA,GAA (mg/kg) / Semivolatiles	1500	180	1000	1000	ug/Kg
BZ41805	\$8100SIMSM	Benzo(b)fluoranthene	CT / RSR GA,GAA (mg/kg) / Semivolatiles	1500	180	1000	1000	ug/Kg
BZ41805	\$8100SIMSM	Benzo(k)fluoranthene	CT / RSR GA,GAA (mg/kg) / Semivolatiles	1200	180	1000	1000	ug/Kg
BZ41805	\$ETPH_SMR	Ext. Petroleum H.C. (C9-C36)	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	540	67	500	500	mg/Kg
BZ41805	\$ETPH_SMR	Ext. Petroleum H.C. (C9-C36)	CT / RSR GA,GAA (mg/kg) / Pesticides/TPH	540	67	500	500	mg/Kg
BZ41806	\$8100SIMSM	Indeno(1,2,3-cd)pyrene	CT / RSR DEC RES (mg/kg) / APS Organics	2800	150	1000	1000	ug/Kg
BZ41806	\$8100SIMSM	Benzo(b)fluoranthene	CT / RSR DEC RES (mg/kg) / Semivolatiles	2800	150	1000	1000	ug/Kg
BZ41806	\$8100SIMSM	Benz(a)anthracene	CT / RSR DEC RES (mg/kg) / Semivolatiles	2600	150	1000	1000	ug/Kg
BZ41806	\$8100SIMSM	Benzo(a)pyrene	CT / RSR DEC RES (mg/kg) / Semivolatiles	3100	150	1000	1000	ug/Kg
BZ41806	\$8100SIMSM	Chrysene	CT / RSR GA,GAA (mg/kg) / APS Organics	3300	150	1000	1000	ug/Kg
BZ41806	\$8100SIMSM	Indeno(1,2,3-cd)pyrene	CT / RSR GA,GAA (mg/kg) / APS Organics	2800	150	1000	1000	ug/Kg
BZ41806	\$8100SIMSM	Benzo(ghi)perylene	CT / RSR GA,GAA (mg/kg) / APS Organics	2400	150	1000	1000	ug/Kg
BZ41806	\$8100SIMSM	Benzo(a)pyrene	CT / RSR GA,GAA (mg/kg) / Semivolatiles	3100	150	1000	1000	ug/Kg
BZ41806	\$8100SIMSM	Benzo(b)fluoranthene	CT / RSR GA,GAA (mg/kg) / Semivolatiles	2800	150	1000	1000	ug/Kg
BZ41806	\$8100SIMSM	Benzo(k)fluoranthene	CT / RSR GA,GAA (mg/kg) / Semivolatiles	3000	150	1000	1000	ug/Kg
BZ41806	\$8100SIMSM	Pyrene	CT / RSR GA,GAA (mg/kg) / Semivolatiles	5400	150	4000	4000	ug/Kg
BZ41806	\$8100SIMSM	Benz(a)anthracene	CT / RSR GA,GAA (mg/kg) / Semivolatiles	2600	150	1000	1000	ug/Kg
BZ41807	\$8100SIMSM	Benz(a)anthracene	CT / RSR DEC RES (mg/kg) / Semivolatiles	1100	160	1000	1000	ug/Kg
BZ41807	\$8100SIMSM	Benzo(a)pyrene	CT / RSR DEC RES (mg/kg) / Semivolatiles	1100	160	1000	1000	ug/Kg
BZ41807	\$8100SIMSM	Chrysene	CT / RSR GA,GAA (mg/kg) / APS Organics	1400	160	1000	1000	ug/Kg
BZ41807	\$8100SIMSM	Benz(a)anthracene	CT / RSR GA,GAA (mg/kg) / Semivolatiles	1100	160	1000	1000	ug/Kg
BZ41807	\$8100SIMSM	Benzo(a)pyrene	CT / RSR GA,GAA (mg/kg) / Semivolatiles	1100	160	1000	1000	ug/Kg
BZ41807	\$8100SIMSM	Benzo(k)fluoranthene	CT / RSR GA,GAA (mg/kg) / Semivolatiles	1200	160	1000	1000	ug/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

RL

Analysis

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Phoenix Environmental Labs, Inc. Client: Fuss & O'Neill, Inc.

Project Location: CT DOT HIGGANUM MAINTENANCE Project Number:

Laboratory Sample ID(s): BZ41805-BZ41809 Sampling Date(s): 11/14/2017

List RCP Methods Used (e.g., 8260, 8270, et cetera) 6010, 7470/7471, 8270, ETPH

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✓ Yes □ No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	<u>VPH and EPH methods only:</u> Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods)	☐ Yes ☐ No ☑ NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	✓ Yes □ No □ NA
4	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents acheived? See Section: ICP Narration.	☐ Yes ☑ No
5	a) Were reporting limits specified or referenced on the chain-of-custody?	✓ Yes □ No
	b) Were these reporting limits met?	✓ Yes □ No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	☐ Yes ☑ No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	✓ Yes □ No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.
Authorized Signature: Han Lee Position: Project Manager
Printed Name: Ethan Lee Date: Wednesday, November 22, 2017
Name of Laboratory Phoenix Environmental Labs, Inc.

This certification form is to be used for RCP methods only.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

November 22, 2017 SDG I.D.: GBZ41805

SDG Comments

Metals Analysis:

The client requested a shorter list of elements than the 6010 RCP list. Only the RCRA 8 Metals are reported as requested on the chain of custody.

8270 Semi-volatile Organics:

The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-of-custody.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-FID1 11/16/17-1

Jeff Bucko, Chemist 11/16/17

BZ41806, BZ41807, BZ41809

The initial calibration (ETPHO18I) RSD for the compound list was less than 30% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-FID11 11/20/17-1

Jeff Bucko, Chemist 11/20/17

BZ41805

The initial calibration (ETPHO26I) RSD for the compound list was less than 30% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-FID21 11/16/17-1

Jeff Bucko, Chemist 11/16/17

BZ41808

The initial calibration (ETPHN13I) RSD for the compound list was less than 30% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

QC (Batch Specific):

Batch 409702 (BZ42307)

BZ41807, BZ41808, BZ41809

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional surrogate criteria: LCS acceptance range is 60-120% MS acceptance range 50-150%. The ETPH/DRO LCS has been normalized based on the alkane calibration.

Batch 409703 (BZ42315)

BZ41805, BZ41806

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional surrogate criteria: LCS acceptance range is 60-120% MS acceptance range 50-150%. The ETPH/DRO LCS has been normalized based on the alkane calibration.

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Certification Report

November 22, 2017 SDG I.D.: GBZ41805

Mercury Narration

Instrument:

MERLIN 11/16/17 08:14 Rick Schweitzer, Chemist 11/16/17

BZ41805, BZ41806, BZ41807, BZ41808, BZ41809

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

QC (Site Specific):

Batch 409829 (BZ41805)

BZ41805, BZ41806, BZ41807, BZ41808, BZ41809

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 75 - 125 with the following exceptions: None.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. MS acceptance range is 75-125%.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. MS acceptance range is 75-125%.

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? No.

QC Batch 409754 (Samples: BZ41805, BZ41806, BZ41807, BZ41808, BZ41809): -----

The Sample/Duplicate RPD exceeds the method criteria for one or more analytes, therefore there may be variability in the reported result. (Barium)

Instrument:

ARCOS 11/16/17 08:55 Mike Arsenault, Chemist 11/16/17

BZ41805, BZ41806, BZ41807, BZ41808, BZ41809

Additional criteria for CCV and ICSAB:

Sodium and Potassium are poor performing elements, the laboratory's in-house limits are 85-115% (CCV) and 70-130% (ICSAB). The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 409754 (BZ42014)

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Certification Report

November 22, 2017 SDG I.D.: GBZ41805

ICP Metals Narration

BZ41805, BZ41806, BZ41807, BZ41808, BZ41809

All LCS recoveries were within 75 - 125 with the following exceptions: None.

SVOASIM Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

CHEM06 11/15/17-2

Damien Drobinski, Chemist 11/15/17

BZ41806

Initial Calibration Verification (CHEM06/BNSIM_1023):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM06/1115_33-BNSIM_1023):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

CHEM06 11/16/17-2

Damien Drobinski, Chemist 11/16/17

BZ41805

Initial Calibration Verification (CHEM06/BNSIM_1023):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM06/1116_33-BNSIM_1023):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

CHEM25 11/15/17-1

Damien Drobinski, Chemist 11/15/17

BZ41807, BZ41808, BZ41809

Initial Calibration Verification (CHEM25/BNSIM_1109):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM25/1115_04-BNSIM_1109):

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

November 22, 2017 SDG I.D.: GBZ41805

SVOASIM Narration

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 409697 (BZ41848)

BZ41807, BZ41808, BZ41809

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Batch 409698 (BZ41426)

BZ41806

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Batch 409918 (BZ42326)

BZ41805

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

MSD notreported for this batch.

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Temperature Narration

The samples were received at 5.6C with cooling initiated. (Note acceptance criteria is above freezing up to 6°C)

	FUSS & O'NEILL (860) 646-2469 • www.FandO.com	pC146 Hartford Road, Manchester, CT 06040 © 56 Quarry Road, Trumbull, CT 06611 © 1419 Richland Street, Columbia, SC 29201	17.78 Interstate 17nve, West Springfield, MA. 01089 13.17 Iron Horse Way, Suite 204, Providence, RI 02908 18.6 Washington Street, Suite 301, Poughkeepsie, NY	Other	
·	CHAIN-OF	CHAIN-OF-CUSTODY RECORD	38425	D 24-Hour* O 72-Hour* O Cher	□ Other (days) Surcharge Applies
PROJI	PROJICT NAME	PROJECT LOCATION	PROJECT NUMBER		LABORATORY
57 D.H.	HGGARNUM MALL	CT DIT HIGHWAM MAINTENINGE PRILITY _ HIGGI	HEGANAMCT ZOIDONTO	420	PROFINE
REPORT TO: (INVOICE TO: P.O. NO.:	STEPANIEWIER				Containers
Sampler's Signature: Source Codes: MW=Monitoring Well SW-Surface Water	ature: Well PW=Potable Water T	Date: 11/14/17 T=Treatment Facility S=Soil B=Sediment W=Waste A=Air C=Concrete	Sport	GOSEN C 1916 GOSEN C 1916 GOSEN C 1916 GOSEN CO 1916 GOSEN	TO SE
Item Transfer Check	Check Sample Number	lumber Source Date Time	SA SON SON	2) 1624 50 160 160 160 160 160 160 160 160 160 16	Now Market
3	1305171114-01	6-10-1	X X		78/7
8					9081h
E		-03			19817
ष्ठ		-oth 1630	0		308 7
50		0to) 7 1 So-	>	-	5081h

2

Additional Comments: GATAMC

Tuesday, November 28, 2017

Attn: Ms. Stephanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Sample ID#s: BZ42536 - BZ42548

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618
MA Lab Registration #M-CT007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63

VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/15/178:50Location Code:F&O-PCBReceived by:LB11/15/1716:38

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

<u>aboratory Data</u> SDG ID: GBZ42536

Phoenix ID: BZ42536

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.36	0.36	mg/Kg	1	11/16/17	MA	SW6010C
Arsenic	0.74	0.71	mg/Kg	1	11/16/17	MA	SW6010C
Barium	52.0	0.36	mg/Kg	1	11/16/17	MA	SW6010C
Cadmium	< 0.36	0.36	mg/Kg	1	11/16/17	MA	SW6010C
Chromium	16.6	0.36	mg/Kg	1	11/16/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/17/17	RS	SW7471B
Lead	1.72	0.36	mg/Kg	1	11/16/17	MA	SW6010C
Selenium	< 1.4	1.4	mg/Kg	1	11/16/17	MA	SW6010C
Percent Solid	89		%		11/15/17	Q	SW846-%Solid
Soil Extraction SVOA PAH	Completed				11/16/17	JJ/CKV	SW3545A
Extraction of CT ETPH	Completed				11/15/17	BC/V	SW3545A
Mercury Digestion	Completed				11/16/17	W/W	SW7471B
Total Metals Digest	Completed				11/15/17	B/AG	SW3050B
TPH by GC (Extractable	Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	 55	mg/Kg	1	11/18/17	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	11/18/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	77		%	1	11/18/17	JRB	50 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
1,1,1-Trichloroethane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	2.7	ug/Kg	1	11/20/17	JLI	SW8260
1,1,2-Trichloroethane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
1,1-Dichloroethane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
1,1-Dichloroethene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
1,1-Dichloropropene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260

Description	D !!	RL/	11.9.	Dilling	Data/T'	_	Defense
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
1,2,3-Trichlorobenzene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
1,2,3-Trichloropropane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
1,2-Dibromoethane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
1,2-Dichlorobenzene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
1,2-Dichloroethane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
1,2-Dichloropropane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
1,3-Dichlorobenzene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
1,3-Dichloropropane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
1,4-Dichlorobenzene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
2,2-Dichloropropane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
2-Chlorotoluene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
2-Hexanone	ND	22	ug/Kg	1	11/20/17	JLI	SW8260
2-Isopropyltoluene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
4-Chlorotoluene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
4-Methyl-2-pentanone	ND	22	ug/Kg	1	11/20/17	JLI	SW8260
Acetone	ND	220	ug/Kg	1	11/20/17	JLI	SW8260
Acrylonitrile	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Benzene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Bromobenzene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Bromochloromethane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Bromodichloromethane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Bromoform	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Bromomethane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Carbon Disulfide	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Carbon tetrachloride	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Chlorobenzene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Chloroethane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Chloroform	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Chloromethane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Dibromochloromethane	ND	2.7	ug/Kg	1	11/20/17	JLI	SW8260
Dibromomethane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Dichlorodifluoromethane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Ethylbenzene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Hexachlorobutadiene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Isopropylbenzene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
m&p-Xylene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Methyl Ethyl Ketone	ND	27	ug/Kg	1	11/20/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	8.9	ug/Kg	1	11/20/17	JLI	SW8260
Methylene chloride	ND	8.9	ug/Kg	1	11/20/17	JLI	SW8260
Naphthalene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
•	ND	4.4	ug/Kg ug/Kg	1	11/20/17	JLI	SW8260
n-Butylbenzene	ND	4.4 4.4	ug/Kg ug/Kg	1	11/20/17	JLI	SW8260
n-Propylbenzene	ND ND	4.4 4.4		1	11/20/17	JLI	
o-Xylene	טא	4.4	ug/Kg	I	11/20/11	JLI	SW8260

Client ID. 1303171113-0	•	RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
p-Isopropyltoluene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
sec-Butylbenzene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Styrene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
tert-Butylbenzene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Tetrachloroethene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	8.9	ug/Kg	1	11/20/17	JLI	SW8260
Toluene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Total Xylenes	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	8.9	ug/Kg	1	11/20/17	JLI	SW8260
Trichloroethene	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Trichlorofluoromethane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Trichlorotrifluoroethane	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
Vinyl chloride	ND	4.4	ug/Kg	1	11/20/17	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	102		%	1	11/20/17	JLI	70 - 130 %
% Bromofluorobenzene	96		%	1	11/20/17	JLI	70 - 130 %
% Dibromofluoromethane	94		%	1	11/20/17	JLI	70 - 130 %
% Toluene-d8	98		%	1	11/20/17	JLI	70 - 130 %
Polynuclear Aromatic Ho	<u>C</u>						
2-Methylnaphthalene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthylene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Anthracene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Chrysene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluoranthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluorene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Naphthalene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Phenanthrene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Pyrene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	63		%	10	11/17/17	DD	30 - 130 %
% Nitrobenzene-d5	64		%	10	11/17/17	DD	30 - 130 %
% Terphenyl-d14	73		%	10	11/17/17	DD	30 - 130 %
Field Extraction	Completed				11/15/17		SW5035A

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171115-01

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/15/179:10Location Code:F&O-PCBReceived by:LB11/15/1716:38

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ42536

Phoenix ID: BZ42537

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.37	0.37	mg/Kg	1	11/16/17	MA	SW6010C
Arsenic	< 0.74	0.74	mg/Kg	1	11/16/17	MA	SW6010C
Barium	10.7	0.37	mg/Kg	1	11/16/17	MA	SW6010C
Cadmium	< 0.37	0.37	mg/Kg	1	11/16/17	MA	SW6010C
Chromium	4.58	0.37	mg/Kg	1	11/16/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/17/17	RS	SW7471B
Lead	4.59	0.37	mg/Kg	1	11/16/17	MA	SW6010C
Selenium	< 1.5	1.5	mg/Kg	1	11/16/17	MA	SW6010C
Percent Solid	85		%		11/15/17	Q	SW846-%Solid
Soil Extraction SVOA PAH	Completed				11/16/17	JJ/CKV	SW3545A
Extraction of CT ETPH	Completed				11/15/17	BC/V	SW3545A
Mercury Digestion	Completed				11/16/17	W/W	SW7471B
Total Metals Digest	Completed				11/15/17	B/AG	SW3050B
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	57	mg/Kg	1	11/18/17	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	11/18/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	90		%	1	11/18/17	JRB	50 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
1,1,1-Trichloroethane	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	3.4	ug/Kg	1	11/20/17	JLI	SW8260
1,1,2-Trichloroethane	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
1,1-Dichloroethane	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
1,1-Dichloroethene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
1,1-Dichloropropene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,2,3-Trichlorobenzene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
1,2,3-Trichloropropane	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	11/20/17	JLI	SW8260
1,2-Dibromoethane	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
1,2-Dichlorobenzene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
1,2-Dichloroethane	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
1,2-Dichloropropane	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
1,3-Dichlorobenzene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
1,3-Dichloropropane	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
1,4-Dichlorobenzene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
2,2-Dichloropropane	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
2-Chlorotoluene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
2-Hexanone	ND	28	ug/Kg	1	11/20/17	JLI	SW8260
2-Isopropyltoluene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
4-Chlorotoluene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
4-Methyl-2-pentanone	ND	28	ug/Kg	1	11/20/17	JLI	SW8260
Acetone	ND	280	ug/Kg	1	11/20/17	JLI	SW8260
Acrylonitrile	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Benzene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Bromobenzene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Bromochloromethane	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Bromodichloromethane	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Bromoform	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Bromomethane	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Carbon Disulfide	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Carbon tetrachloride	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Chlorobenzene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Chloroethane	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Chloroform	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Chloromethane	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Dibromochloromethane	ND	3.4	ug/Kg	1	11/20/17	JLI	SW8260
Dibromomethane	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Dichlorodifluoromethane	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Ethylbenzene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Hexachlorobutadiene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Isopropylbenzene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
m&p-Xylene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Methyl Ethyl Ketone	ND	34	ug/Kg	1	11/20/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	11	ug/Kg	1	11/20/17	JLI	SW8260
Methylene chloride	ND	11	ug/Kg	1	11/20/17	JLI	SW8260
Naphthalene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
n-Butylbenzene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
n-Propylbenzene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
o-Xylene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260

	<u>-</u>	RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
p-Isopropyltoluene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
sec-Butylbenzene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Styrene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
tert-Butylbenzene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Tetrachloroethene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	11	ug/Kg	1	11/20/17	JLI	SW8260
Toluene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Total Xylenes	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	11	ug/Kg	1	11/20/17	JLI	SW8260
Trichloroethene	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Trichlorofluoromethane	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Trichlorotrifluoroethane	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
Vinyl chloride	ND	5.6	ug/Kg	1	11/20/17	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	99		%	1	11/20/17	JLI	70 - 130 %
% Bromofluorobenzene	83		%	1	11/20/17	JLI	70 - 130 %
% Dibromofluoromethane	98		%	1	11/20/17	JLI	70 - 130 %
% Toluene-d8	94		%	1	11/20/17	JLI	70 - 130 %
Polynuclear Aromatic I	HC_						
2-Methylnaphthalene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthylene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Anthracene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Chrysene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluoranthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluorene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Naphthalene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Phenanthrene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Pyrene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
QA/QC Surrogates			0 0				` ,
% 2-Fluorobiphenyl	63		%	10	11/17/17	DD	30 - 130 %
% Nitrobenzene-d5	66		%	10	11/17/17	DD	30 - 130 %
% Terphenyl-d14	73		%	10	11/17/17	DD	30 - 130 %
Field Extraction	Completed				11/15/17		SW5035A

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171115-02

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/15/179:40Location Code:F&O-PCBReceived by:LB11/15/1716:38

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data

SDG ID: GBZ42536

Phoenix ID: BZ42538

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.33	0.33	mg/Kg	1	11/16/17	MA	SW6010C
Arsenic	< 0.66	0.66	mg/Kg	1	11/16/17	MA	SW6010C
Barium	25.6	0.33	mg/Kg	1	11/16/17	MA	SW6010C
Cadmium	< 0.33	0.33	mg/Kg	1	11/16/17	MA	SW6010C
Chromium	8.10	0.33	mg/Kg	1	11/16/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/17/17	RS	SW7471B
Lead	1.01	0.33	mg/Kg	1	11/16/17	MA	SW6010C
Selenium	< 1.3	1.3	mg/Kg	1	11/16/17	MA	SW6010C
Percent Solid	91		%		11/15/17	Q	SW846-%Solid
Soil Extraction SVOA PAH	Completed				11/16/17	JJ/CKV	SW3545A
Extraction of CT ETPH	Completed				11/16/17	CC/VCK	SW3545A
Mercury Digestion	Completed				11/16/17	W/W	SW7471B
Total Metals Digest	Completed				11/15/17	B/AG	SW3050B
TPH by GC (Extractable	e Products	s)					
Ext. Petroleum H.C. (C9-C36)	ND	 53	mg/Kg	1	11/18/17	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	11/18/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	86		%	1	11/18/17	JRB	50 - 150 %
Volatiles							
1,1,1,2-Tetrachloroethane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
1,1,1-Trichloroethane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	2.5	ug/Kg	1	11/18/17	JLI	SW8260
1,1,2-Trichloroethane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
1,1-Dichloroethane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
1,1-Dichloroethene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
1,1-Dichloropropene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,2,3-Trichlorobenzene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
1,2,3-Trichloropropane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dibromoethane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichlorobenzene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichloroethane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichloropropane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
1,3-Dichlorobenzene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
1,3-Dichloropropane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
1,4-Dichlorobenzene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
2,2-Dichloropropane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
2-Chlorotoluene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
2-Hexanone	ND	21	ug/Kg	1	11/18/17	JLI	SW8260
2-Isopropyltoluene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
4-Chlorotoluene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
4-Methyl-2-pentanone	ND	21	ug/Kg	1	11/18/17	JLI	SW8260
Acetone	ND	210	ug/Kg	1	11/18/17	JLI	SW8260
Acrylonitrile	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Benzene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Bromobenzene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Bromochloromethane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Bromodichloromethane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Bromoform	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Bromomethane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Carbon Disulfide	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Carbon tetrachloride	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Chlorobenzene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Chloroethane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Chloroform	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Chloromethane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Dibromochloromethane	ND	2.5	ug/Kg	1	11/18/17	JLI	SW8260
Dibromomethane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Dichlorodifluoromethane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Ethylbenzene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
-	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Hexachlorobutadiene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Isopropylbenzene							
m&p-Xylene	ND ND	4.2 25	ug/Kg ug/Kg	1	11/18/17 11/18/17	JLI JLI	SW8260 SW8260
Methyl Ethyl Ketone				1			
Methyl t-butyl ether (MTBE)	ND	8.5	ug/Kg	1	11/18/17	JLI	SW8260
Methylene chloride	ND	8.5	ug/Kg	1	11/18/17	JLI	SW8260
Naphthalene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
n-Butylbenzene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
n-Propylbenzene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
o-Xylene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260

Gliefit ID. 13031711113-0	O	RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
p-Isopropyltoluene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
sec-Butylbenzene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Styrene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
tert-Butylbenzene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Tetrachloroethene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	8.5	ug/Kg	1	11/18/17	JLI	SW8260
Toluene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Total Xylenes	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	8.5	ug/Kg	1	11/18/17	JLI	SW8260
Trichloroethene	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Trichlorofluoromethane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Trichlorotrifluoroethane	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
Vinyl chloride	ND	4.2	ug/Kg	1	11/18/17	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	102		%	1	11/18/17	JLI	70 - 130 %
% Bromofluorobenzene	97		%	1	11/18/17	JLI	70 - 130 %
% Dibromofluoromethane	93		%	1	11/18/17	JLI	70 - 130 %
% Toluene-d8	98		%	1	11/18/17	JLI	70 - 130 %
Polynuclear Aromatic H	<u>C</u>						
2-Methylnaphthalene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthylene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Anthracene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Chrysene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluoranthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluorene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Naphthalene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Phenanthrene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Pyrene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	62		%	10	11/17/17	DD	30 - 130 %
% Nitrobenzene-d5	63		%	10	11/17/17	DD	30 - 130 %
% Terphenyl-d14	74		%	10	11/17/17	DD	30 - 130 %
Field Extraction	Completed				11/15/17		SW5035A

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171115-03

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/15/1710:00Location Code:F&O-PCBReceived by:LB11/15/1716:38

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ42536

Phoenix ID: BZ42539

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
							SW6010C
Silver	< 0.34	0.34	mg/Kg	1	11/17/17	MA	
Arsenic	2.36	0.69	mg/Kg	1	11/17/17	MA	SW6010C
Barium	25.5	0.34	mg/Kg	1	11/17/17	MA	SW6010C
Cadmium	0.38	0.34	mg/Kg	1	11/17/17	MA	SW6010C
Chromium	19.5	0.34	mg/Kg	1	11/17/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/17/17	RS	SW7471B
Lead	26.6	0.34	mg/Kg	1	11/17/17	MA	SW6010C
Selenium	< 1.4	1.4	mg/Kg	1	11/17/17	MA	SW6010C
Percent Solid	92		%		11/15/17	Q	SW846-%Solid
Soil Extraction SVOA PAH	Completed				11/16/17	JJ/CKV	SW3545A
Extraction of CT ETPH	Completed				11/15/17	BC/V	SW3545A
Mercury Digestion	Completed				11/16/17	W/W	SW7471B
Total Metals Digest	Completed				11/15/17	B/AG	SW3050B
TPH by GC (Extractable	e Products	s)					
Ext. Petroleum H.C. (C9-C36)	310	 54	mg/Kg	1	11/20/17	JRB	CTETPH 8015D
Identification	**		mg/Kg	1	11/20/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	76		%	1	11/20/17	JRB	50 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
1,1,1-Trichloroethane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	2.9	ug/Kg	1	11/18/17	JLI	SW8260
1,1,2-Trichloroethane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
1,1-Dichloroethane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
1,1-Dichloroethene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
1,1-Dichloropropene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,2,3-Trichlorobenzene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
1,2,3-Trichloropropane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dibromoethane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichlorobenzene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichloroethane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichloropropane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
1,3-Dichlorobenzene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
1,3-Dichloropropane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
1,4-Dichlorobenzene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
2,2-Dichloropropane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
2-Chlorotoluene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
2-Hexanone	ND	24	ug/Kg	1	11/18/17	JLI	SW8260
2-Isopropyltoluene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
4-Chlorotoluene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
4-Methyl-2-pentanone	ND	24	ug/Kg	1	11/18/17	JLI	SW8260
Acetone	ND	240	ug/Kg	1	11/18/17	JLI	SW8260
Acrylonitrile	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Benzene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Bromobenzene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Bromochloromethane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Bromodichloromethane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Bromoform	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Bromomethane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Carbon Disulfide	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Carbon tetrachloride	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Chlorobenzene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Chloroethane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Chloroform	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Chloromethane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Dibromochloromethane	ND	2.9	ug/Kg	1	11/18/17	JLI	SW8260
Dibromomethane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Dichlorodifluoromethane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Ethylbenzene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Hexachlorobutadiene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Isopropylbenzene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
m&p-Xylene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Methyl Ethyl Ketone	ND	29	ug/Kg	1	11/18/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	9.6	ug/Kg	1	11/18/17	JLI	SW8260
Methylene chloride	ND	9.6	ug/Kg	1	11/18/17	JLI	SW8260
-	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Naphthalene	ND	4.8	ug/Kg ug/Kg	1	11/18/17	JLI	SW8260
n-Butylbenzene n-Propylbenzene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
o-Xylene	IND	7.0	ug/Ng	ı	11/10/17	JLI	G V V U Z U U

Client ID. 130317 1113-04		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
p-Isopropyltoluene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
sec-Butylbenzene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Styrene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
tert-Butylbenzene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Tetrachloroethene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	9.6	ug/Kg	1	11/18/17	JLI	SW8260
Toluene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Total Xylenes	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	9.6	ug/Kg	1	11/18/17	JLI	SW8260
Trichloroethene	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Trichlorofluoromethane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Trichlorotrifluoroethane	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
Vinyl chloride	ND	4.8	ug/Kg	1	11/18/17	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	102		%	1	11/18/17	JLI	70 - 130 %
% Bromofluorobenzene	90		%	1	11/18/17	JLI	70 - 130 %
% Dibromofluoromethane	94		%	1	11/18/17	JLI	70 - 130 %
% Toluene-d8	97		%	1	11/18/17	JLI	70 - 130 %
Polynuclear Aromatic HO	<u>2</u>						
2-Methylnaphthalene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthylene	2500	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Anthracene	880	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benz(a)anthracene	2100	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(a)pyrene	4800	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	3900	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	4100	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	3200	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Chrysene	3000	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	890	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluoranthene	2100	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluorene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	4800	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Naphthalene	170	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Phenanthrene	410	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Pyrene	2800	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	49		%	10	11/17/17	DD	30 - 130 %
% Nitrobenzene-d5	48		%	10	11/17/17	DD	30 - 130 %
% Terphenyl-d14	51		%	10	11/17/17	DD	30 - 130 %
Field Extraction	Completed				11/15/17		SW5035A

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171115-04

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C14 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/15/1710:20Location Code:F&O-PCBReceived by:LB11/15/1716:38

Rush Request: Standard Analyzed by: see "By" below

RI/

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ42536

Phoenix ID: BZ42540

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.36	0.36	mg/Kg	1	11/17/17	MA	SW6010C
Arsenic	2.48	0.72	mg/Kg	1	11/17/17	MA	SW6010C
Barium	79.6	0.36	mg/Kg	1	11/17/17	MA	SW6010C
Cadmium	0.47	0.36	mg/Kg	1	11/17/17	MA	SW6010C
Chromium	14.8	0.36	mg/Kg	1	11/17/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/17/17	RS	SW7471B
Lead	3.82	0.36	mg/Kg	1	11/17/17	MA	SW6010C
Selenium	< 1.4	1.4	mg/Kg	1	11/17/17	MA	SW6010C
Percent Solid	93		%		11/15/17	Q	SW846-%Solid
Soil Extraction SVOA PAH	Completed				11/16/17	JJ/CKV	SW3545A
Extraction of CT ETPH	Completed				11/15/17	BC/V	SW3545A
Mercury Digestion	Completed				11/16/17	W/W	SW7471B
Total Metals Digest	Completed				11/15/17	B/AG	SW3050B
TDH by GC (Extractable	o Droducte	٠١					
Ext. Petroleum H.C. (C9-C36) Identification	e Products ND ND	5) 53	mg/Kg mg/Kg	1 1	11/22/17 11/22/17	JRB JRB	
TPH by GC (Extractable Ext. Petroleum H.C. (C9-C36) Identification QA/QC Surrogates % n-Pentacosane	ND					_	CTETPH 8015D CTETPH 8015D 50 - 150 %
Ext. Petroleum H.C. (C9-C36) Identification QA/QC Surrogates % n-Pentacosane	ND ND		mg/Kg	1	11/22/17	JRB	CTETPH 8015D
Ext. Petroleum H.C. (C9-C36) Identification QA/QC Surrogates % n-Pentacosane Volatiles	ND ND		mg/Kg	1	11/22/17	JRB	CTETPH 8015D
Ext. Petroleum H.C. (C9-C36) Identification QA/QC Surrogates	ND ND 89	53	mg/Kg	1	11/22/17	JRB JRB	CTETPH 8015D 50 - 150 %
Ext. Petroleum H.C. (C9-C36) Identification QA/QC Surrogates % n-Pentacosane Volatiles 1,1,1,2-Tetrachloroethane	ND ND 89 ND	53 5.4	mg/Kg % ug/Kg	1 1	11/22/17 11/22/17 11/18/17	JRB JRB JLI	CTETPH 8015D 50 - 150 % SW8260
Ext. Petroleum H.C. (C9-C36) Identification QA/QC Surrogates % n-Pentacosane Volatiles 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	ND ND 89 ND ND	5.4 5.4	mg/Kg % ug/Kg ug/Kg	1 1 1 1	11/22/17 11/22/17 11/18/17 11/18/17	JRB JRB JLI JLI	CTETPH 8015D 50 - 150 % SW8260 SW8260
Ext. Petroleum H.C. (C9-C36) Identification QA/QC Surrogates % n-Pentacosane Volatiles 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane	ND ND 89 ND ND ND	5.4 5.4 5.4 3.2	mg/Kg % ug/Kg ug/Kg ug/Kg	1 1 1 1 1	11/22/17 11/22/17 11/18/17 11/18/17 11/18/17	JRB JRB JLI JLI JLI	CTETPH 8015D 50 - 150 % SW8260 SW8260 SW8260
Ext. Petroleum H.C. (C9-C36) Identification QA/QC Surrogates % n-Pentacosane Volatiles 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	ND ND 89 ND ND ND	5.4 5.4 5.4 3.2 5.4	mg/Kg % ug/Kg ug/Kg ug/Kg ug/Kg	1 1 1 1 1	11/22/17 11/22/17 11/18/17 11/18/17 11/18/17	JRB JRB JLI JLI JLI JLI	CTETPH 8015D 50 - 150 % SW8260 SW8260 SW8260 SW8260

Cliefit ID. 1303171113-0		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
1,2,3-Trichlorobenzene	ND	250	ug/Kg	50	11/20/17	JLI	SW8260
1,2,3-Trichloropropane	ND	250	ug/Kg	50	11/20/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	250	ug/Kg	50	11/20/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	250	ug/Kg	50	11/20/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dibromoethane	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichlorobenzene	ND	250	ug/Kg	50	11/20/17	JLI	SW8260
1,2-Dichloroethane	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichloropropane	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	250	ug/Kg	50	11/20/17	JLI	SW8260
1,3-Dichlorobenzene	ND	250	ug/Kg	50	11/20/17	JLI	SW8260
1,3-Dichloropropane	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
1,4-Dichlorobenzene	ND	250	ug/Kg	50	11/20/17	JLI	SW8260
2,2-Dichloropropane	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
2-Chlorotoluene	ND	250	ug/Kg	50	11/20/17	JLI	SW8260
2-Hexanone	ND	27	ug/Kg	1	11/18/17	JLI	SW8260
2-Isopropyltoluene	ND	250	ug/Kg	50	11/20/17	JLI	SW8260
4-Chlorotoluene	ND	250	ug/Kg	50	11/20/17	JLI	SW8260
4-Methyl-2-pentanone	ND	27	ug/Kg	1	11/18/17	JLI	SW8260
Acetone	ND	270	ug/Kg	1	11/18/17	JLI	SW8260
Acrylonitrile	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Benzene	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Bromobenzene	ND	250	ug/Kg	50	11/20/17	JLI	SW8260
Bromochloromethane	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Bromodichloromethane	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Bromoform	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Bromomethane	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Carbon Disulfide	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Carbon tetrachloride	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Chlorobenzene	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Chloroethane	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Chloroform	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Chloromethane	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Dibromochloromethane	ND	3.2	ug/Kg	1	11/18/17	JLI	SW8260
Dibromomethane	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Dichlorodifluoromethane	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Ethylbenzene	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Hexachlorobutadiene	ND	200	ug/Kg	50	11/20/17	JLI	SW8260
Isopropylbenzene	ND	250	ug/Kg	50	11/20/17	JLI	SW8260
m&p-Xylene	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Methyl Ethyl Ketone	ND	32	ug/Kg	1	11/18/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	11	ug/Kg	1	11/18/17	JLI	SW8260
Methylene chloride	ND	11	ug/Kg	1	11/18/17	JLI	SW8260
Naphthalene	ND	250	ug/Kg	50	11/20/17	JLI	SW8260
n-Butylbenzene	ND	250	ug/Kg	50	11/20/17	JLI	SW8260
n-Propylbenzene	ND	250	ug/Kg ug/Kg	50 50	11/20/17	JLI	SW8260
o-Xylene	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
O Aylone	NU	J. T	ug/itg	ı	11,10,11	ULI	3110200

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
p-Isopropyltoluene	ND	250	ug/Kg	50	11/20/17	JLI	SW8260
sec-Butylbenzene	ND	250	ug/Kg	50	11/20/17	JLI	SW8260
Styrene	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
tert-Butylbenzene	ND	250	ug/Kg	50	11/20/17	JLI	SW8260
Tetrachloroethene	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	11	ug/Kg	1	11/18/17	JLI	SW8260
Toluene	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Total Xylenes	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	500	ug/Kg	50	11/20/17	JLI	SW8260
Trichloroethene	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Trichlorofluoromethane	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Trichlorotrifluoroethane	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
Vinyl chloride	ND	5.4	ug/Kg	1	11/18/17	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	101		%	50	11/20/17	JLI	70 - 130 %
% Bromofluorobenzene	97		%	50	11/20/17	JLI	70 - 130 %
% Dibromofluoromethane	100		%	1	11/18/17	JLI	70 - 130 %
% Toluene-d8	98		%	1	11/18/17	JLI	70 - 130 %
Polynuclear Aromatic I	<u> 1C</u>						
2-Methylnaphthalene	 ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthylene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Anthracene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	340	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Chrysene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluoranthene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluorene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	260	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Naphthalene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Phenanthrene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Pyrene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	57		%	10	11/17/17	DD	30 - 130 %
% Nitrobenzene-d5	59		%	10	11/17/17	DD	30 - 130 %
% Terphenyl-d14	63		%	10	11/17/17	DD	30 - 130 %
Field Extraction	Completed				11/15/17		SW5035A

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171115-05

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Volatile Comment:

There was a suppression of the last internal standard in the low level analysis, all affected compounds are reported from the methanol preserved high level analysis which did not exhibit this interference.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/15/1711:05Location Code:F&O-PCBReceived by:LB11/15/1716:38

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ42536

Phoenix ID: BZ42541

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.36	0.36	mg/Kg	1	11/17/17	MA	SW6010C
Arsenic	6.29	0.73	mg/Kg	1	11/17/17	MA	SW6010C
Barium	61.1	0.36	mg/Kg	1	11/17/17	MA	SW6010C
Cadmium	< 0.36	0.36	mg/Kg	1	11/17/17	MA	SW6010C
Chromium	16.0	0.36	mg/Kg	1	11/17/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/17/17	RS	SW7471B
Lead	3.04	0.36	mg/Kg	1	11/17/17	MA	SW6010C
Selenium	< 1.5	1.5	mg/Kg	1	11/17/17	MA	SW6010C
Percent Solid	93		%		11/15/17	Q	SW846-%Solid
Soil Extraction SVOA PAH	Completed				11/16/17	JJ/CKV	SW3545A
Extraction of CT ETPH	Completed				11/15/17	BC/V	SW3545A
Mercury Digestion	Completed				11/16/17	W/W	SW7471B
Total Metals Digest	Completed				11/15/17	B/AG	SW3050B
TPH by GC (Extractable	Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	53	mg/Kg	1	11/18/17	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	11/18/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	62		%	1	11/18/17	JRB	50 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,1,1-Trichloroethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	3.1	ug/Kg	1	11/18/17	JLI	SW8260
1,1,2-Trichloroethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,1-Dichloroethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,1-Dichloroethene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,1-Dichloropropene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260

Client ID. 1303171113-0		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
1,2,3-Trichlorobenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,2,3-Trichloropropane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dibromoethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichlorobenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichloroethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichloropropane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,3-Dichlorobenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,3-Dichloropropane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,4-Dichlorobenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
2,2-Dichloropropane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
2-Chlorotoluene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
2-Hexanone	ND	26	ug/Kg	1	11/18/17	JLI	SW8260
2-Isopropyltoluene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
4-Chlorotoluene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
4-Methyl-2-pentanone	ND	26	ug/Kg	1	11/18/17	JLI	SW8260
Acetone	ND	260	ug/Kg	1	11/18/17	JLI	SW8260
Acrylonitrile	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Benzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Bromobenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Bromochloromethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Bromodichloromethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Bromoform	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Bromomethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Carbon Disulfide	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Carbon tetrachloride	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Chlorobenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Chloroethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Chloroform	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Chloromethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Dibromochloromethane	ND	3.1	ug/Kg	1	11/18/17	JLI	SW8260
Dibromomethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Dichlorodifluoromethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Ethylbenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Hexachlorobutadiene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Isopropylbenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
m&p-Xylene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Methyl Ethyl Ketone	ND	31	ug/Kg	1	11/18/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	1	11/18/17	JLI	SW8260
Methylene chloride	ND	10	ug/Kg	1	11/18/17	JLI	SW8260
Naphthalene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
n-Butylbenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
n-Propylbenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
o-Xylene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
- 1.y.ono		-	<i>و بو</i>	•	, . 🛩 • •	~ = ·	

REV Parameter Result PQL Units Dilution Date/Time By Reference
Sec-Butylbenzene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260
Styrene
tert-Butylbenzene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Tetrachloroethene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Totarlaydrofuran (THF) ND 10 ug/Kg 1 11/18/17 JLI SW8260 Total Xylenes ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Total Xylenes ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 trans-1,2-Dichloroethene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 trans-1,3-Dichloropropene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichloroethene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichlorofluoromethane ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichlorotifluoromethane ND 5.1 ug/Kg 1 11/18/17
Tetrachioroethene ND 5.1 ug/Kg 1 111/18/17 JLI SW8260 Tetrahydrofuran (THF) ND 10 ug/Kg 1 111/18/17 JLI SW8260 Toluene ND 5.1 ug/Kg 1 111/18/17 JLI SW8260 Total Xylenes ND 5.1 ug/Kg 1 111/18/17 JLI SW8260 Trotal Xylenes ND 5.1 ug/Kg 1 111/18/17 JLI SW8260 trans-1,2-Dichloroethene ND 5.1 ug/Kg 1 111/18/17 JLI SW8260 trans-1,3-Dichloropropene ND 5.1 ug/Kg 1 111/18/17 JLI SW8260 trans-1,3-Dichloro-2-butene ND 10 ug/Kg 1 111/18/17 JLI SW8260 trans-1,4-dichloro-2-butene ND 10 ug/Kg 1 111/18/17 JLI SW8260 Trichloroethene ND 5.1 ug/Kg 1 111/18/17 JLI SW8260 Trichloroethene ND 5.1 ug/Kg 1 111/18/17 JLI SW8260 Trichloroffluoromethane ND 5.1 ug/Kg 1 111/18/17 JLI SW8260 Trichloroffluoroethane ND 5.1 ug/Kg 1 111/18/17 JLI SW8260 Trichloroffluoroethane ND 5.1 ug/Kg 1 111/18/17 JLI SW8260 Vinyl chloride ND 5.1 ug/Kg 1 111/18/17 JLI SW8260 Vinyl chloride ND 5.1 ug/Kg 1 111/18/17 JLI SW8260 **OA/QC Surrogates** **O*1,2-dichlorobenzene-d4** 101
Tetrahydrofuran (THF) ND 10 ug/Kg 1 11/18/17 JLI SW8260 Toluene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Total Xylenes ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 trans-1,2-Dichloroethene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 trans-1,3-Dichloropropene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 trans-1,4-dichloro-2-butene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichlorofthere ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichloroftuoromethane ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichloroftuorotethane ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Vinyl chloride ND 5.1 ug/Kg 1 11/18/17
Toluene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Total Xylenes ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 trans-1,2-Dichloroptene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 trans-1,3-Dichloropropene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 trans-1,4-dichloro-2-butene ND 10 ug/Kg 1 11/18/17 JLI SW8260 Trichlorothene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichlorothene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichlorotifluoromethane ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Vinyl chloride ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Vinyl chloride ND 5.1 ug/Kg 1 11/18/17 JLI
Total Xylenes ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 trans-1,2-Dichloroethene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 trans-1,3-Dichloropropene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichloroethene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichlorothene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichlorothene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichlorotifluoromethane ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichlorotifluorobentane ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Vinyl chloride ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Vinyl chloride ND 5.1 ug/Kg 1 11/18/17
trans-1,2-Dichloroethene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 trans-1,3-Dichloropropene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 trans-1,4-dichloro-2-butene ND 10 ug/Kg 1 11/18/17 JLI SW8260 Trichlorofluoromethane ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichlorofluoromethane ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichlorotifluoromethane ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Vinyl chloride ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Vinyl chloride ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Vinyl chloride ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Vinyl chloride ND 5.1 ug/Kg 1 11/1
trans-1,3-Dichloropropene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 trans-1,4-dichloro-2-butene ND 10 ug/Kg 1 11/18/17 JLI SW8260 Trichloroethene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichlorotrifluoromethane ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichlorotrifluoroethane ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Vinyl chloride ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 QA/QC Surrogates Vinyl chloride ND 5.1 ug/Kg 1 11/18/17 JLI 70 - 130 % Me Surrogates Vinyl chloride ND 4 1 11/18/17 JLI 70 - 130 % Me Surrogates Vinyl chloride ND 4 1 11/18/17 JLI 70 - 130 % Me Surrogates Vinyl chloride ND
trans-1,4-dichloro-2-butene ND 10 ug/Kg 1 11/18/17 JLI SW8260 Trichloroethene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichlorofluoromethane ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichlorotrifluoroethane ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Vinyl chloride ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 QA/QC Surrogates V 1 11/18/17 JLI SW8260 QA/QC Surrogates V 1 11/18/17 JLI 70 - 130 % % 1,2-dichlorobenzene-d4 101 % 1 11/18/17 JLI 70 - 130 % % Bromofluorobenzene 96 % 1 11/18/17 JLI 70 - 130 % % Toluene-d8 97 % 1 11/18/17 JLI 70 - 130 % Polynuclear Aromatic HC 2
Trichloroethene ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichloroffluoromethane ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichlorotrifluoroethane ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Vinyl chloride ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 QA/QC Surrogates % 1,2-dichlorobenzene-d4 101 % 1 11/18/17 JLI 70 - 130 % % Bromofluorobenzene 96 % 1 11/18/17 JLI 70 - 130 % % Dibromofluoromethane 94 % 1 11/18/17 JLI 70 - 130 % * Subject of
Trichlorofluoromethane ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Trichlorotrifluoroethane ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Vinyl chloride ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 QA/QC Surrogates % 1,2-dichlorobenzene-d4 101 % 1 11/18/17 JLI 70 - 130 % % Bromofluorobenzene 96 % 1 11/18/17 JLI 70 - 130 % % Dibromofluoromethane 94 % 1 11/18/17 JLI 70 - 130 % % Toluene-d8 97 % 1 11/18/17 JLI 70 - 130 % POlynuclear Aromatic HC 2-Methylnaphthalene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Acenaphthylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Anthracene ND 140 ug/Kg
Trichlorotrifluoroethane ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 Vinyl chloride ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 QA/QC Surrogates SW8 1,2-dichlorobenzene-d4 101 % 1 11/18/17 JLI 70 - 130 % % Bromofluorobenzene 96 % 1 11/18/17 JLI 70 - 130 % % Dibromofluoromethane 94 % 1 11/18/17 JLI 70 - 130 % % Toluene-d8 97 % 1 11/18/17 JLI 70 - 130 % Polynuclear Aromatic HC V 1 11/18/17 JLI 70 - 130 % Polynuclear Aromatic HC V 1 11/18/17 JLI 70 - 130 % Polynuclear Aromatic HC V V 1 11/16/17 DD SW8270D (SIM) Acenaphthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Anthracene ND <t< td=""></t<>
Vinyl chloride ND 5.1 ug/Kg 1 11/18/17 JLI SW8260 QA/QC Surrogates % 1 11/18/17 JLI 70 - 130 % % Bromofluorobenzene 96 % 1 11/18/17 JLI 70 - 130 % % Dibromofluoromethane 94 % 1 11/18/17 JLI 70 - 130 % % Toluene-d8 97 % 1 11/18/17 JLI 70 - 130 % Polynuclear Aromatic HC V 1 11/18/17 JLI 70 - 130 % Polynuclear Aromatic HC V 1 11/18/17 JLI 70 - 130 % Polynuclear Aromatic HC V V 1 11/18/17 JLI 70 - 130 % Polynuclear Aromatic HC V V 1 11/18/17 JLI 70 - 130 % Polynuclear Aromatic HC V V 1 11/16/17 DD SW8270D (SIM) Polynuclear Aromatic HC V V 1 V V V V
QA/QC Surrogates % 1,2-dichlorobenzene-d4 101 % 1 11/18/17 JLI 70 - 130 % % Bromofluorobenzene 96 % 1 11/18/17 JLI 70 - 130 % % Dibromofluoromethane 94 % 1 11/18/17 JLI 70 - 130 % % Toluene-d8 97 % 1 11/18/17 JLI 70 - 130 % Polynuclear Aromatic HC 2-Methylnaphthalene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Acenaphthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(a)anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(a)pyrene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
% 1,2-dichlorobenzene-d4 101 % 1 11/18/17 JLI 70 - 130 % % Bromofluorobenzene 96 % 1 11/18/17 JLI 70 - 130 % % Dibromofluoromethane 94 % 1 11/18/17 JLI 70 - 130 % % Toluene-d8 97 % 1 11/18/17 JLI 70 - 130 % Polynuclear Aromatic HC 2-Methylnaphthalene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Acenaphthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(a)pyrene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
% 1,2-dichlorobenzene-d4 101 % 1 11/18/17 JLI 70 - 130 % % Bromofluorobenzene 96 % 1 11/18/17 JLI 70 - 130 % % Dibromofluoromethane 94 % 1 11/18/17 JLI 70 - 130 % % Toluene-d8 97 % 1 11/18/17 JLI 70 - 130 % Polynuclear Aromatic HC 2-Methylnaphthalene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Acenaphthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(a)pyrene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
% Dibromofluoromethane 94 % 1 11/18/17 JLI 70 - 130 % % Toluene-d8 97 % 1 11/18/17 JLI 70 - 130 % Polynuclear Aromatic HC 2-Methylnaphthalene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Acenaphthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Acenaphthylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(a)anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
% Toluene-d8 97 % 1 11/18/17 JLI 70 - 130 % Polynuclear Aromatic HC 2-Methylnaphthalene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Acenaphthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Acenaphthylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(a)anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
Polynuclear Aromatic HC 2-Methylnaphthalene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Acenaphthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Acenaphthylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(a)anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(a)pyrene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
2-Methylnaphthalene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Acenaphthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Acenaphthylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(a)anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(a)pyrene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
Acenaphthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Acenaphthylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benz(a)anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(a)pyrene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
Acenaphthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Acenaphthylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(a)anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(a)pyrene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
Acenaphthylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(a)anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(a)pyrene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
Anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benz(a)anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(a)pyrene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
Benzo(a)pyrene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
Benzo(a)pyrene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
Benzo(b)fluoranthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
Benzo(ghi)perylene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
Benzo(k)fluoranthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
Chrysene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
Dibenz(a,h)anthracene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
Fluoranthene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
Fluorene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
Indeno(1,2,3-cd)pyrene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
Naphthalene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
Phenanthrene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
Pyrene ND 140 ug/Kg 10 11/16/17 DD SW8270D (SIM)
QA/QC Surrogates
% 2-Fluorobiphenyl 60 % 10 11/16/17 DD 30 - 130 %
% Nitrobenzene-d5 49 % 10 11/16/17 DD 30 - 130 %
% Terphenyl-d14 61 % 10 11/16/17 DD 30 - 130 %
Field Extraction Completed 11/15/17 SW5035A

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171115-06

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/15/1711:45Location Code:F&O-PCBReceived by:LB11/15/1716:38

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

<u>aboratory Data</u> SDG ID: GBZ42536

Phoenix ID: BZ42542

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.37	0.37	mg/Kg	1	11/17/17	MA	SW6010C
Arsenic	1.18	0.74	mg/Kg	1	11/17/17	MA	SW6010C
Barium	69.7	0.37	mg/Kg	1	11/17/17	MA	SW6010C
Cadmium	< 0.37	0.37	mg/Kg	1	11/17/17	MA	SW6010C
Chromium	4.26	0.37	mg/Kg	1	11/17/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/17/17	RS	SW7471B
Lead	< 0.37	0.37	mg/Kg	1	11/17/17	MA	SW6010C
Selenium	< 1.5	1.5	mg/Kg	1	11/17/17	MA	SW6010C
Percent Solid	80		%		11/15/17	Q	SW846-%Solid
Soil Extraction SVOA PAH	Completed				11/16/17	JJ/CKV	SW3545A
Extraction of CT ETPH	Completed				11/15/17	BC/V	SW3545A
Mercury Digestion	Completed				11/16/17	W/W	SW7471B
Extraction for PCB	Completed				11/16/17	X/R	SW3540C
Total Metals Digest	Completed				11/15/17	B/AG	SW3050B
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	61	mg/Kg	1	11/18/17	JRB	CTETPH 8015D
		~ .	mg/kg	I	11/10/17	סוגם	OTE IT IT OUTSE
Identification	ND		mg/Kg	1	11/18/17	JRB	CTETPH 8015D
Identification QA/QC Surrogates						-	
						-	
QA/QC Surrogates	ND 70	•	mg/Kg	1	11/18/17	JRB	CTETPH 8015D
QA/QC Surrogates % n-Pentacosane	ND 70	0.41	mg/Kg	1	11/18/17	JRB	CTETPH 8015D
QA/QC Surrogates % n-Pentacosane PCB (Soxhlet SW35400	ND 70		mg/Kg %	1	11/18/17	JRB JRB	CTETPH 8015D 50 - 150 %
QA/QC Surrogates % n-Pentacosane PCB (Soxhlet SW35400 PCB-1016	ND 70 C) ND	0.41	mg/Kg % mg/kg	1 1 10	11/18/17 11/18/17 11/17/17	JRB JRB	CTETPH 8015D 50 - 150 % SW8082A
QA/QC Surrogates % n-Pentacosane PCB (Soxhlet SW35400 PCB-1016 PCB-1221	ND 70 C) ND ND ND	0.41 0.41	mg/Kg % mg/kg mg/kg	1 1 10 10	11/18/17 11/18/17 11/17/17 11/17/17	JRB JRB AW AW	CTETPH 8015D 50 - 150 % SW8082A SW8082A
QA/QC Surrogates % n-Pentacosane PCB (Soxhlet SW35400 PCB-1016 PCB-1221 PCB-1232	ND 70 C) ND ND ND ND	0.41 0.41 0.41	mg/Kg % mg/kg mg/kg mg/kg	1 1 10 10 10	11/18/17 11/18/17 11/17/17 11/17/17	JRB JRB AW AW AW	CTETPH 8015D 50 - 150 % SW8082A SW8082A SW8082A

Client ID: 1305171115-07

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1260	ND	0.41	mg/kg	10	11/17/17	AW	SW8082A
PCB-1262	ND	0.41	mg/kg	10	11/17/17	AW	SW8082A
PCB-1268	ND	0.41	mg/kg	10	11/17/17	AW	SW8082A
QA/QC Surrogates							
% DCBP	100		%	10	11/17/17	AW	30 - 150 %
% TCMX	88		%	10	11/17/17	AW	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,1,1-Trichloroethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	3.0	ug/Kg	1	11/18/17	JLI	SW8260
1,1,2-Trichloroethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,1-Dichloroethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,1-Dichloroethene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,1-Dichloropropene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,2,3-Trichlorobenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,2,3-Trichloropropane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dibromoethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichlorobenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichloroethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichloropropane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,3-Dichlorobenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,3-Dichloropropane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
1,4-Dichlorobenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
2,2-Dichloropropane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
2-Chlorotoluene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
2-Hexanone	ND	25	ug/Kg	1	11/18/17	JLI	SW8260
2-Isopropyltoluene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
4-Chlorotoluene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
4-Methyl-2-pentanone	ND	25	ug/Kg	1	11/18/17	JLI	SW8260
Acetone	ND	250	ug/Kg	1	11/18/17	JLI	SW8260
Acrylonitrile	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Benzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Bromobenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Bromochloromethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Bromodichloromethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Bromoform	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Bromomethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Carbon Disulfide	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Carbon tetrachloride	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Chlorobenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Chloroethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Chloroform	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Chloromethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260

Client ID: 1305171115-07

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Dibromochloromethane	ND	3.0	ug/Kg	1	11/18/17	JLI	SW8260
Dibromomethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Dichlorodifluoromethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Ethylbenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Hexachlorobutadiene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Isopropylbenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
m&p-Xylene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Methyl Ethyl Ketone	ND	30	ug/Kg	1	11/18/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	1	11/18/17	JLI	SW8260
Methylene chloride	ND	10	ug/Kg	1	11/18/17	JLI	SW8260
Naphthalene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
n-Butylbenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
n-Propylbenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
o-Xylene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
p-Isopropyltoluene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
sec-Butylbenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Styrene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
tert-Butylbenzene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Tetrachloroethene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	10	ug/Kg	1	11/18/17	JLI	SW8260
Toluene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Total Xylenes	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	10	ug/Kg	1	11/18/17	JLI	SW8260
Trichloroethene	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Trichlorofluoromethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Trichlorotrifluoroethane	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
Vinyl chloride	ND	5.1	ug/Kg	1	11/18/17	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	101		%	1	11/18/17	JLI	70 - 130 %
% Bromofluorobenzene	98		%	1	11/18/17	JLI	70 - 130 %
% Dibromofluoromethane	92		%	1	11/18/17	JLI	70 - 130 %
% Toluene-d8	99		%	1	11/18/17	JLI	70 - 130 %
Polynuclear Aromatic H	<u>C</u>						
2-Methylnaphthalene	ND	160	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Acenaphthene	ND	160	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Acenaphthylene	ND	160	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Anthracene	ND	160	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	160	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	160	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	160	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	160	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	160	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Chrysene	ND	160	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	160	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Fluoranthene	ND	160	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Fluorene	ND	160	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	160	ug/Kg	10	11/16/17	DD	SW8270D (SIM)

Client ID: 1305171115-07

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Naphthalene	ND	160	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Phenanthrene	ND	160	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
Pyrene	ND	160	ug/Kg	10	11/16/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	63		%	10	11/16/17	DD	30 - 130 %
% Nitrobenzene-d5	57		%	10	11/16/17	DD	30 - 130 %
% Terphenyl-d14	63		%	10	11/16/17	DD	30 - 130 %
Field Extraction	Completed				11/15/17		SW5035A

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/15/1712:00Location Code:F&O-PCBReceived by:LB11/15/1716:38

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ42536

Phoenix ID: BZ42543

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171115-08

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.37	0.37	mg/Kg	1	11/17/17	MA	SW6010C
Arsenic	1.21	0.74	mg/Kg	1	11/17/17	MA	SW6010C
Barium	56.9	0.37	mg/Kg	1	11/17/17	MA	SW6010C
Cadmium	0.43	0.37	mg/Kg	1	11/17/17	MA	SW6010C
Chromium	8.78	0.37	mg/Kg	1	11/17/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/17/17	RS	SW7471B
Lead	12.3	0.37	mg/Kg	1	11/17/17	MA	SW6010C
Selenium	< 1.5	1.5	mg/Kg	1	11/17/17	MA	SW6010C
Percent Solid	89		%		11/15/17	Q	SW846-%Solid
Soil Extraction SVOA PAH	Completed				11/16/17	JJ/CKV	SW3545A
Extraction of CT ETPH	Completed				11/15/17	BC/V	SW3545A
Mercury Digestion	Completed				11/16/17	W/W	SW7471B
Total Metals Digest	Completed				11/15/17	B/AG	SW3050B
TPH by GC (Extractable	e Products	s)					
Ext. Petroleum H.C. (C9-C36)	ND	 55	mg/Kg	1	11/18/17	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	11/18/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	75		%	1	11/18/17	JRB	50 - 150 %
Volatiles							
1,1,1,2-Tetrachloroethane	ND	57	ug/Kg	50	11/18/17	JLI	SW8260
1,1,1-Trichloroethane	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	57	ug/Kg	50	11/18/17	JLI	SW8260
1,1,2-Trichloroethane	ND	100	ug/Kg	50	11/18/17	JLI	SW8260
1,1-Dichloroethane	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
1,1-Dichloroethene	ND	140	ug/Kg	50	11/18/17	JLI	SW8260
1,1-Dichloropropene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260

Client ID: 1305171115-08

Client ID. 1303171113-0		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
1,2,3-Trichlorobenzene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
1,2,3-Trichloropropane	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	57	ug/Kg	50	11/18/17	JLI	SW8260
1,2-Dibromoethane	ND	28	ug/Kg	50	11/18/17	JLI	SW8260
1,2-Dichlorobenzene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
1,2-Dichloroethane	ND	28	ug/Kg	50	11/18/17	JLI	SW8260
1,2-Dichloropropane	ND	100	ug/Kg	50	11/18/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
1,3-Dichlorobenzene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
1,3-Dichloropropane	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
1,4-Dichlorobenzene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
2,2-Dichloropropane	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
2-Chlorotoluene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
2-Hexanone	ND	700	ug/Kg	50	11/18/17	JLI	SW8260
2-Isopropyltoluene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
4-Chlorotoluene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
4-Methyl-2-pentanone	ND	1400	ug/Kg	50	11/18/17	JLI	SW8260
Acetone	ND	14000	ug/Kg	50	11/18/17	JLI	SW8260
Acrylonitrile	ND	28	ug/Kg	50	11/18/17	JLI	SW8260
Benzene	ND	28	ug/Kg	50	11/18/17	JLI	SW8260
Bromobenzene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
Bromochloromethane	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
Bromodichloromethane	ND	57	ug/Kg	50	11/18/17	JLI	SW8260
Bromoform	ND	80	ug/Kg	50	11/18/17	JLI	SW8260
Bromomethane	ND	110	ug/Kg	50	11/18/17	JLI	SW8260
Carbon Disulfide	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
Carbon tetrachloride	ND	100	ug/Kg	50	11/18/17	JLI	SW8260
Chlorobenzene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
Chloroethane	ND	150	ug/Kg	50	11/18/17	JLI	SW8260
Chloroform	ND	120	ug/Kg	50	11/18/17	JLI	SW8260
Chloromethane	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
Dibromochloromethane	ND	57	ug/Kg	50	11/18/17	JLI	SW8260
Dibromomethane	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
Dichlorodifluoromethane	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
Ethylbenzene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
Hexachlorobutadiene	ND	200	ug/Kg	50	11/18/17	JLI	SW8260
Isopropylbenzene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
m&p-Xylene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
Methyl Ethyl Ketone	ND	1700	ug/Kg	50	11/18/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	570	ug/Kg	50	11/18/17	JLI	SW8260
Methylene chloride	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
Naphthalene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
n-Butylbenzene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
n-Propylbenzene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
o-Xylene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
o Aylene	ND	200	ug/Ng	50	11/10/11	ULI	3110200

Client ID: 1305171115-08

Gliefit ID. 1303171113-0	O	RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
p-Isopropyltoluene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
sec-Butylbenzene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
Styrene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
tert-Butylbenzene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
Tetrachloroethene	ND	100	ug/Kg	50	11/18/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	140	ug/Kg	50	11/18/17	JLI	SW8260
Toluene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
Total Xylenes	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	570	ug/Kg	50	11/18/17	JLI	SW8260
Trichloroethene	ND	100	ug/Kg	50	11/18/17	JLI	SW8260
Trichlorofluoromethane	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
Trichlorotrifluoroethane	ND	280	ug/Kg	50	11/18/17	JLI	SW8260
Vinyl chloride	ND	40	ug/Kg	50	11/18/17	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	101		%	50	11/18/17	JLI	70 - 130 %
% Bromofluorobenzene	95		%	50	11/18/17	JLI	70 - 130 %
% Dibromofluoromethane	91		%	50	11/18/17	JLI	70 - 130 %
% Toluene-d8	98		%	50	11/18/17	JLI	70 - 130 %
Polynuclear Aromatic H	С						
2-Methylnaphthalene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthylene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Anthracene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Chrysene	160	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluoranthene	180	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluorene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Naphthalene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Phenanthrene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Pyrene	240	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	55		%	10	11/17/17	DD	30 - 130 %
% Nitrobenzene-d5	47		%	10	11/17/17	DD	30 - 130 %
% Terphenyl-d14	53		%	10	11/17/17	DD	30 - 130 %
Field Extraction	Completed				11/15/17		SW5035A

Client ID: 1305171115-08

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of non-target compounds.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/15/1713:05Location Code:F&O-PCBReceived by:LB11/15/1716:38

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ42536

Phoenix ID: BZ42544

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171115-09

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.40	0.40	mg/Kg	1	11/17/17	MA	SW6010C
Arsenic	< 0.80	0.80	mg/Kg	1	11/17/17	MA	SW6010C
Barium	15.8	0.40	mg/Kg	1	11/17/17	MA	SW6010C
Cadmium	0.71	0.40	mg/Kg	1	11/17/17	MA	SW6010C
Chromium	10.2	0.40	mg/Kg	1	11/17/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/20/17	RS	SW7471B
_ead	< 0.40	0.40	mg/Kg	1	11/17/17	MA	SW6010C
Selenium	< 1.6	1.6	mg/Kg	1	11/17/17	MA	SW6010C
Percent Solid	78		%		11/15/17	Q	SW846-%Solid
Soil Extraction SVOA PAH	Completed				11/16/17	JJ/CKV	SW3545A
Extraction of CT ETPH	Completed				11/15/17	BC/V	SW3545A
Mercury Digestion	Completed				11/20/17	W/W	SW7471B
Extraction for PCB	Completed				11/16/17	X/R	SW3540C
Total Metals Digest	Completed				11/15/17	B/AG	SW3050B
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	63	mg/Kg	1	11/18/17	JRB	CTETPH 8015D
dentification	ND		mg/Kg	1	11/18/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	57		%	1	11/18/17	JRB	50 - 150 %
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	 ND	0.43	mg/kg	10	11/17/17	AW	SW8082A
PCB-1221	ND	0.43	mg/kg	10	11/17/17	AW	SW8082A
PCB-1232	ND	0.43	mg/kg	10	11/17/17	AW	SW8082A
PCB-1242	ND	0.43	mg/kg	10	11/17/17	AW	SW8082A
PCB-1248	ND	0.43	mg/kg	10	11/17/17	AW	SW8082A
PCB-1254	ND	0.43	mg/kg	10	11/17/17	AW	SW8082A

Client ID: 1305171115-09

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1260	ND	0.43	mg/kg	10	11/17/17	AW	SW8082A
PCB-1262	ND	0.43	mg/kg	10	11/17/17	AW	SW8082A
PCB-1268	ND	0.43	mg/kg	10	11/17/17	AW	SW8082A
QA/QC Surrogates							
% DCBP	107		%	10	11/17/17	AW	30 - 150 %
% TCMX	90		%	10	11/17/17	AW	30 - 150 %
Volatiles							
1,1,1,2-Tetrachloroethane	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
1,1,1-Trichloroethane	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	3.6	ug/Kg	1	11/18/17	JLI	SW8260
1,1,2-Trichloroethane	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
1,1-Dichloroethane	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
1,1-Dichloroethene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
1,1-Dichloropropene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
1,2,3-Trichlorobenzene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
1,2,3-Trichloropropane	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dibromoethane	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichlorobenzene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichloroethane	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichloropropane	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
1,3-Dichlorobenzene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
1,3-Dichloropropane	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
1,4-Dichlorobenzene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
2,2-Dichloropropane	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
2-Chlorotoluene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
2-Hexanone	ND	30	ug/Kg	1	11/18/17	JLI	SW8260
2-Isopropyltoluene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
4-Chlorotoluene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
4-Methyl-2-pentanone	ND	30	ug/Kg	1	11/18/17	JLI	SW8260
Acetone	ND	300	ug/Kg	1	11/18/17	JLI	SW8260
Acrylonitrile	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Benzene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Bromobenzene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Bromochloromethane	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Bromodichloromethane	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Bromoform	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Bromomethane	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Carbon Disulfide	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Carbon tetrachloride	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Chlorobenzene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Chloroethane	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Chloroform	ND	6.0	ug/Kg ug/Kg	1	11/18/17	JLI	SW8260
Chloromethane	ND	6.0	ug/Kg ug/Kg	1	11/18/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	6.0	ug/Kg ug/Kg	1	11/18/17	JLI	SW8260
cis-1,2-Dichloropropene	ND	6.0	ug/Kg ug/Kg	1	11/18/17	JLI	SW8260
	ND	0.0	ug/itg	1	11/10/17	JLI	5 ¥ ¥ 0 2 0 0

Client ID: 1305171115-09

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Dibromochloromethane	ND	3.6	ug/Kg	1	11/18/17	JLI	SW8260
Dibromomethane	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Dichlorodifluoromethane	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Ethylbenzene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Hexachlorobutadiene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Isopropylbenzene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
m&p-Xylene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Methyl Ethyl Ketone	ND	36	ug/Kg	1	11/18/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	12	ug/Kg	1	11/18/17	JLI	SW8260
Methylene chloride	ND	12	ug/Kg	1	11/18/17	JLI	SW8260
Naphthalene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
n-Butylbenzene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
n-Propylbenzene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
o-Xylene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
p-Isopropyltoluene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
sec-Butylbenzene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Styrene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
tert-Butylbenzene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Tetrachloroethene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	12	ug/Kg	1	11/18/17	JLI	SW8260
Toluene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Total Xylenes	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	12	ug/Kg	1	11/18/17	JLI	SW8260
Trichloroethene	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Trichlorofluoromethane	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Trichlorotrifluoroethane	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
Vinyl chloride	ND	6.0	ug/Kg	1	11/18/17	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	102		%	1	11/18/17	JLI	70 - 130 %
% Bromofluorobenzene	96		%	1	11/18/17	JLI	70 - 130 %
% Dibromofluoromethane	97		%	1	11/18/17	JLI	70 - 130 %
% Toluene-d8	98		%	1	11/18/17	JLI	70 - 130 %
Polynuclear Aromatic H	<u>IC</u>						
2-Methylnaphthalene	ND	170	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthene	ND	170	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthylene	ND	170	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Anthracene	ND	170	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	170	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	170	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	170	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	170	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	170	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Chrysene	ND	170	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	170	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluoranthene	ND	170	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluorene	ND	170	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	170	ug/Kg	10	11/17/17	DD	SW8270D (SIM)

Client ID: 1305171115-09

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Naphthalene	ND	170	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Phenanthrene	ND	170	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Pyrene	ND	170	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	51		%	10	11/17/17	DD	30 - 130 %
% Nitrobenzene-d5	43		%	10	11/17/17	DD	30 - 130 %
% Terphenyl-d14	55		%	10	11/17/17	DD	30 - 130 %
Field Extraction	Completed				11/15/17		SW5035A

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

 Sample Information
 Custody Information
 Date
 Time

 Matrix:
 SOIL
 Collected by:
 11/15/17
 13:30

 Location Code:
 F&O-PCB
 Received by:
 LB
 11/15/17
 16:38

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data

SDG ID: GBZ42536

Phoenix ID: BZ42545

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171115-10

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.38	0.38	mg/Kg	1	11/17/17	MA	SW6010C
Arsenic	7.89	0.76	mg/Kg	1	11/17/17	MA	SW6010C
Barium	72.4	0.38	mg/Kg	1	11/17/17	MA	SW6010C
Cadmium	7.95	0.38	mg/Kg	1	11/17/17	MA	SW6010C
Chromium	35.8	0.38	mg/Kg	1	11/17/17	MA	SW6010C
Mercury	0.04	0.03	mg/Kg	1	11/20/17	RS	SW7471B
Lead	80.6	0.38	mg/Kg	1	11/17/17	MA	SW6010C
Selenium	< 1.5	1.5	mg/Kg	1	11/17/17	MA	SW6010C
Percent Solid	88		%		11/15/17	Q	SW846-%Solid
Soil Extraction SVOA PAH	Completed				11/16/17	JJ/CKV	SW3545A
Extraction of CT ETPH	Completed				11/15/17	BC/V	SW3545A
Mercury Digestion	Completed				11/20/17	W/W	SW7471B
Total Metals Digest	Completed				11/15/17	B/AG	SW3050B
TPH by GC (Extractable	Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	260	56	mg/Kg	1	11/18/17	JRB	CTETPH 8015D
Identification	**		mg/Kg	1	11/18/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	73		%	1	11/18/17	JRB	50 - 150 %
Volatiles							
1,1,1,2-Tetrachloroethane	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
1,1,1-Trichloroethane	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	3.4	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2-Trichloroethane	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethane	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloropropene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260

Client ID: 1305171115-10

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,2,3-Trichlorobenzene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
1,2,3-Trichloropropane	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dibromoethane	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichlorobenzene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichloroethane	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichloropropane	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
1,3-Dichlorobenzene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
1,3-Dichloropropane	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
1,4-Dichlorobenzene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
2,2-Dichloropropane	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
2-Chlorotoluene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
2-Hexanone	ND	28	ug/Kg	1	11/19/17	JLI	SW8260
2-Isopropyltoluene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
4-Chlorotoluene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
4-Methyl-2-pentanone	ND	28	ug/Kg	1	11/19/17	JLI	SW8260
Acetone	ND	280	ug/Kg	1	11/19/17	JLI	SW8260
Acrylonitrile	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Benzene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Bromobenzene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Bromochloromethane	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Bromodichloromethane	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Bromoform	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Bromomethane	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Carbon Disulfide	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Carbon tetrachloride	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Chlorobenzene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Chloroethane	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Chloroform	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Chloromethane	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Dibromochloromethane	ND	3.4	ug/Kg	1	11/19/17	JLI	SW8260
Dibromomethane	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Dichlorodifluoromethane	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Ethylbenzene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Hexachlorobutadiene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Isopropylbenzene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
m&p-Xylene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Methyl Ethyl Ketone	ND	34	ug/Kg	1	11/19/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	11	ug/Kg	1	11/19/17	JLI	SW8260
Methylene chloride	ND	11	ug/Kg	1	11/19/17	JLI	SW8260
-	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Naphthalene	ND	5.7 5.7	ug/Kg	1	11/19/17	JLI	SW8260
n-Butylbenzene	ND ND	5.7 5.7		1	11/19/17		SW8260 SW8260
n-Propylbenzene			ug/Kg			JLI	
o-Xylene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260

Client ID: 1305171115-10

Client ID: 1305171115-1	U						
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
p-Isopropyltoluene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
sec-Butylbenzene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Styrene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
tert-Butylbenzene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Tetrachloroethene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	11	ug/Kg	1	11/19/17	JLI	SW8260
Toluene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Total Xylenes	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	11	ug/Kg	1	11/19/17	JLI	SW8260
Trichloroethene	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Trichlorofluoromethane	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Trichlorotrifluoroethane	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
Vinyl chloride	ND	5.7	ug/Kg	1	11/19/17	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	94		%	1	11/19/17	JLI	70 - 130 %
% Bromofluorobenzene	97		%	1	11/19/17	JLI	70 - 130 %
% Dibromofluoromethane	102		%	1	11/19/17	JLI	70 - 130 %
% Toluene-d8	91		%	1	11/19/17	JLI	70 - 130 %
	_						
Polynuclear Aromatic H	<u>IC</u>						
2-Methylnaphthalene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthylene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Anthracene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benz(a)anthracene	210	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(a)pyrene	300	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	310	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	430	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	420	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Chrysene	460	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluoranthene	590	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluorene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	450	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Naphthalene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Phenanthrene	370	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Pyrene	560	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	56		%	10	11/17/17	DD	30 - 130 %
% Nitrobenzene-d5	50		%	10	11/17/17	DD	30 - 130 %
% Terphenyl-d14	54		%	10	11/17/17	DD	30 - 130 %
Field Extraction	Completed				11/15/17		SW5035A

Client ID: 1305171115-10

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C9 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

 Sample Information
 Custody Information
 Date
 Time

 Matrix:
 SOIL
 Collected by:
 11/15/17
 13:50

 Location Code:
 F&O-PCB
 Received by:
 LB
 11/15/17
 16:38

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ42536

Phoenix ID: BZ42546

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171115-11

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.35	0.35	mg/Kg	1	11/17/17	MA	SW6010C
Arsenic	< 0.70	0.70	mg/Kg	1	11/17/17	MA	SW6010C
Barium	21.2	0.35	mg/Kg	1	11/17/17	MA	SW6010C
Cadmium	< 0.35	0.35	mg/Kg	1	11/17/17	MA	SW6010C
Chromium	2.03	0.35	mg/Kg	1	11/17/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/20/17	RS	SW7471B
Lead	< 0.35	0.35	mg/Kg	1	11/17/17	MA	SW6010C
Selenium	< 1.4	1.4	mg/Kg	1	11/17/17	MA	SW6010C
Percent Solid	90		%		11/15/17	Q	SW846-%Solid
Soil Extraction SVOA PAH	Completed				11/16/17	JJ/CKV	SW3545A
Extraction of CT ETPH	Completed				11/15/17	BC/V	SW3545A
Mercury Digestion	Completed				11/20/17	W/W	SW7471B
Extraction for PCB	Completed				11/16/17	X/R	SW3540C
Total Metals Digest	Completed				11/15/17	B/AG	SW3050B
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	55	mg/Kg	1	11/18/17	JRB	CTETPH 8015D
dentification	ND		mg/Kg	1	11/18/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	69		%	1	11/18/17	JRB	50 - 150 %
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	 ND	0.36	mg/kg	10	11/17/17	AW	SW8082A
PCB-1221	ND	0.36	mg/kg	10	11/17/17	AW	SW8082A
PCB-1232	ND	0.36	mg/kg	10	11/17/17	AW	SW8082A
PCB-1242	ND	0.36	mg/kg	10	11/17/17	AW	SW8082A
PCB-1248	ND	0.36	mg/kg	10	11/17/17	AW	SW8082A
PCB-1254	ND	0.36	mg/kg	10	11/17/17	AW	SW8082A

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY Phoenix I.D.: BZ42546

Client ID: 1305171115-11

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1260	ND	0.36	mg/kg	10	11/17/17	AW	SW8082A
PCB-1262	ND	0.36	mg/kg	10	11/17/17	AW	SW8082A
PCB-1268	ND	0.36	mg/kg	10	11/17/17	AW	SW8082A
QA/QC Surrogates							
% DCBP	107		%	10	11/17/17	AW	30 - 150 %
% TCMX	98		%	10	11/17/17	AW	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,1,1-Trichloroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	2.9	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2-Trichloroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloropropene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2,3-Trichlorobenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2,3-Trichloropropane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dibromoethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichlorobenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichloroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichloropropane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,3-Dichlorobenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,3-Dichloropropane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,4-Dichlorobenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
2,2-Dichloropropane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
2-Chlorotoluene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
2-Hexanone	ND	24	ug/Kg	1	11/19/17	JLI	SW8260
2-Isopropyltoluene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
4-Chlorotoluene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
4-Methyl-2-pentanone	ND	24	ug/Kg	1	11/19/17	JLI	SW8260
Acetone	ND	240	ug/Kg	1	11/19/17	JLI	SW8260
Acrylonitrile	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Benzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Bromobenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Bromochloromethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Bromodichloromethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Bromoform	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Bromomethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Carbon Disulfide	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Carbon tetrachloride	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Chlorobenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Chloroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Chloroform	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Chloromethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260

Client ID: 1305171115-11

Client ID: 1305171115-11	I	DI.					
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Dibromochloromethane	ND	2.9	ug/Kg	1	11/19/17	JLI	SW8260
Dibromomethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Dichlorodifluoromethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Ethylbenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Hexachlorobutadiene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Isopropylbenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
m&p-Xylene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Methyl Ethyl Ketone	ND	29	ug/Kg	1	11/19/17	JLI	SW8260
	ND	9.6	ug/Kg	1	11/19/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	9.6	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
Methylene chloride	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Naphthalene	ND	4.8	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
n-Butylbenzene	ND	4.8	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
n-Propylbenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
o-Xylene					11/19/17		
p-Isopropyltoluene	ND	4.8 4.8	ug/Kg	1	11/19/17	JLI	SW8260 SW8260
sec-Butylbenzene	ND		ug/Kg	1	11/19/17	JLI	
Styrene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
tert-Butylbenzene	ND	4.8	ug/Kg	1		JLI	SW8260
Tetrachloroethene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	9.6	ug/Kg	1	11/19/17	JLI	SW8260
Toluene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Total Xylenes	ND	4.8	ug/Kg	1	11/19/17	JLI 	SW8260
trans-1,2-Dichloroethene	ND	4.8	ug/Kg	1	11/19/17	JLI 	SW8260
trans-1,3-Dichloropropene	ND	4.8	ug/Kg	1	11/19/17	JLI 	SW8260
trans-1,4-dichloro-2-butene	ND	9.6	ug/Kg	1	11/19/17	JLI 	SW8260
Trichloroethene	ND	4.8	ug/Kg	1	11/19/17	JLI 	SW8260
Trichlorofluoromethane	ND	4.8	ug/Kg	1	11/19/17	JLI 	SW8260
Trichlorotrifluoroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Vinyl chloride	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	94		%	1	11/19/17	JLI	70 - 130 %
% Bromofluorobenzene	98		%	1	11/19/17	JLI	70 - 130 %
% Dibromofluoromethane	99		%	1	11/19/17	JLI	70 - 130 %
% Toluene-d8	91		%	1	11/19/17	JLI	70 - 130 %
Polynuclear Aromatic Ho	<u>C</u>						
2-Methylnaphthalene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthylene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Anthracene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Chrysene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluoranthene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluorene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
	.,,,		~ 9 /1\9		, ,	20	(S. (S. (V.)

Client ID: 1305171115-11

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Naphthalene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Phenanthrene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Pyrene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	53		%	10	11/17/17	DD	30 - 130 %
% Nitrobenzene-d5	42		%	10	11/17/17	DD	30 - 130 %
% Terphenyl-d14	57		%	10	11/17/17	DD	30 - 130 %
Field Extraction	Completed				11/15/17		SW5035A

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/15/1714:00Location Code:F&O-PCBReceived by:LB11/15/1716:38

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

<u>aboratory Data</u> SDG ID: GBZ42536

Phoenix ID: BZ42547

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171115-12

RL/

Parameter	Result	PQL	Units	Units Dilution		Ву	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	50	ug/Kg	50	11/18/17	JLI	SW8260
1,1,1-Trichloroethane	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	50	ug/Kg	50	11/18/17	JLI	SW8260
1,1,2-Trichloroethane	ND	100	ug/Kg	50	11/18/17	JLI	SW8260
1,1-Dichloroethane	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
1,1-Dichloroethene	ND	140	ug/Kg	50	11/18/17	JLI	SW8260
1,1-Dichloropropene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
1,2,3-Trichlorobenzene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
1,2,3-Trichloropropane	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	50	ug/Kg	50	11/18/17	JLI	SW8260
1,2-Dibromoethane	ND	25	ug/Kg	50	11/18/17	JLI	SW8260
1,2-Dichlorobenzene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
1,2-Dichloroethane	ND	25	ug/Kg	50	11/18/17	JLI	SW8260
1,2-Dichloropropane	ND	100	ug/Kg	50	11/18/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
1,3-Dichlorobenzene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
1,3-Dichloropropane	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
1,4-Dichlorobenzene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
2,2-Dichloropropane	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
2-Chlorotoluene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
2-Hexanone	ND	700	ug/Kg	50	11/18/17	JLI	SW8260
2-Isopropyltoluene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
4-Chlorotoluene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
4-Methyl-2-pentanone	ND	1300	ug/Kg	50	11/18/17	JLI	SW8260

Client ID: 1305171115-12

Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane	ND ND ND ND ND	5000 25 25	ug/Kg ug/Kg	50	11/18/17	JLI	SW8260
Benzene Bromobenzene	ND ND		ug/Kg				
Bromobenzene	ND	25		50	11/18/17	JLI	SW8260
			ug/Kg	50	11/18/17	JLI	SW8260
Bromochloromethane	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
		250	ug/Kg	50	11/18/17	JLI	SW8260
Bromodichloromethane	ND	50	ug/Kg	50	11/18/17	JLI	SW8260
Bromoform	ND	80	ug/Kg	50	11/18/17	JLI	SW8260
Bromomethane	ND	100	ug/Kg	50	11/18/17	JLI	SW8260
Carbon Disulfide	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
Carbon tetrachloride	ND	100	ug/Kg	50	11/18/17	JLI	SW8260
Chlorobenzene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
Chloroethane	ND	150	ug/Kg	50	11/18/17	JLI	SW8260
Chloroform	ND	120	ug/Kg	50	11/18/17	JLI	SW8260
Chloromethane	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
Dibromochloromethane	ND	50	ug/Kg	50	11/18/17	JLI	SW8260
Dibromomethane	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
Dichlorodifluoromethane	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
Ethylbenzene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
Hexachlorobutadiene	ND	200	ug/Kg	50	11/18/17	JLI	SW8260
Isopropylbenzene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
m&p-Xylene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
Methyl Ethyl Ketone	ND	3000	ug/Kg	50	11/18/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
Methylene chloride	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
Naphthalene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
n-Butylbenzene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
n-Propylbenzene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
o-Xylene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
p-Isopropyltoluene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
sec-Butylbenzene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
Styrene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
tert-Butylbenzene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
Tetrachloroethene	ND	100	ug/Kg	50	11/18/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	130	ug/Kg	50	11/18/17	JLI	SW8260
Toluene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
Total Xylenes	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	250	ug/Kg	50	11/18/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	500	ug/Kg	50	11/18/17	JLI	SW8260
Trichloroethene	ND	100	ug/Kg ug/Kg	50 50	11/18/17	JLI	SW8260
Trichlorofluoromethane	ND	250	ug/Kg ug/Kg	50 50	11/18/17	JLI	SW8260
Trichlorotrifluoroethane	ND	250	ug/Kg ug/Kg	50 50	11/18/17	JLI	SW8260
	ND	40	ug/Kg ug/Kg	50 50	11/18/17	JLI	SW8260
Vinyl chloride	שויו	40	ug/Ng	30	11/10/17	JLI	JVV0200
QA/QC Surrogates	100		%	50	11/18/17	11.1	70 - 130 %
% 1,2-dichlorobenzene-d4	98		%	50 50	11/18/17	JLI JLI	70 - 130 % 70 - 130 %
% Bromofluorobenzene							
% Dibromofluoromethane	92		%	50	11/18/17	JLI	70 - 130 %

Client ID: 1305171115-12

Parameter		RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	98		%	50	11/18/17	JLI	70 - 130 %
Field Extraction	Completed				11/15/17		SW5035A

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/15/1714:05Location Code:F&O-PCBReceived by:LB11/15/1716:38

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

<u>aboratory Data</u> SDG ID: GBZ42536

Phoenix ID: BZ42548

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171115-13

RL

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
1,1,1-Trichloroethane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	3.0	ug/Kg	1	11/18/17	JLI	SW8260
1,1,2-Trichloroethane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
1,1-Dichloroethane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
1,1-Dichloroethene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
I,1-Dichloropropene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
1,2,3-Trichlorobenzene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
1,2,3-Trichloropropane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
I,2,4-Trichlorobenzene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
,2,4-Trimethylbenzene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dibromoethane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichlorobenzene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichloroethane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
1,2-Dichloropropane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
I,3,5-Trimethylbenzene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
1,3-Dichlorobenzene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
1,3-Dichloropropane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
1,4-Dichlorobenzene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
2,2-Dichloropropane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
2-Chlorotoluene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
2-Hexanone	ND	25	ug/Kg	1	11/18/17	JLI	SW8260
2-Isopropyltoluene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
4-Chlorotoluene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
4-Methyl-2-pentanone	ND	25	ug/Kg	1	11/18/17	JLI	SW8260

Client ID: 1305171115-13

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	250	ug/Kg	1	11/18/17	JLI	SW8260
Acrylonitrile	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Benzene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Bromobenzene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Bromochloromethane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Bromodichloromethane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Bromoform	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Bromomethane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Carbon Disulfide	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Carbon tetrachloride	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Chlorobenzene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Chloroethane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Chloroform	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Chloromethane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Dibromochloromethane	ND	3.0	ug/Kg	1	11/18/17	JLI	SW8260
Dibromomethane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Dichlorodifluoromethane	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Ethylbenzene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Hexachlorobutadiene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Isopropylbenzene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
m&p-Xylene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Methyl Ethyl Ketone	ND	30	ug/Kg	1	11/18/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	1	11/18/17	JLI	SW8260
Methylene chloride	ND	10	ug/Kg	1	11/18/17	JLI	SW8260
Naphthalene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
n-Butylbenzene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
n-Propylbenzene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
o-Xylene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
p-Isopropyltoluene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
sec-Butylbenzene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Styrene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
tert-Butylbenzene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Tetrachloroethene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	10	ug/Kg	1	11/18/17	JLI	SW8260
Toluene	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
Total Xylenes	ND	5.0	ug/Kg ug/Kg	1	11/18/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	5.0	ug/Kg ug/Kg	1	11/18/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	5.0	ug/Kg ug/Kg	1	11/18/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	10	ug/Kg ug/Kg	1	11/18/17	JLI	SW8260
	ND	5.0	ug/Kg ug/Kg	1	11/18/17	JLI	SW8260
Trichloroethene Trichlorofluoromethane	ND ND	5.0	ug/Kg ug/Kg	1	11/18/17	JLI	SW8260
	ND ND	5.0			11/18/17	JLI	SW8260
Trichlorotrifluoroethane			ug/Kg	1			
Vinyl chloride	ND	5.0	ug/Kg	1	11/18/17	JLI	SW8260
QA/QC Surrogates	100		0/	4	11/10/17		70 120 0/
% 1,2-dichlorobenzene-d4	100		%	1	11/18/17	JLI	70 - 130 %
% Bromofluorobenzene	96		%	1	11/18/17	JLI	70 - 130 %
% Dibromofluoromethane	91		%	1	11/18/17	JLI	70 - 130 %

Client ID: 1305171115-13

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	98		%	1	11/18/17	JLI	70 - 130 %
Field Extraction	Completed				11/15/17		SW5035A

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

November 28, 2017

QA/QC Data

SDG I.D.: GBZ42536

% Blk Sample Dup Dup LCS **LCSD** LCS MS MSD MS Rec **RPD** Blank Result RPD **RPD RPD** Limits RΙ Result % % % Limits Parameter QA/QC Batch 410035 (mg/kg), QC Sample No: BZ32852 (BZ42544, BZ42545, BZ42546) Mercury - Soil **BRL** 0.03 0.10 0.12 NC 92.9 93.4 0.5 102 70 - 130 30 Comment: Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. MS acceptance range is 75-125%. QA/QC Batch 409829 (mg/kg), QC Sample No: BZ41805 (BZ42536, BZ42537, BZ42538, BZ42539, BZ42540, BZ42541, BZ42542, BZ42543) Mercury - Soil **BRL** 0.03 < 0.03 < 0.03 NC 84.8 89.2 5.1 101 70 - 130 Comment: Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. MS acceptance range is 75-125%. QA/QC Batch 409779 (mg/kg), QC Sample No: BZ42314 (BZ42536, BZ42537, BZ42538) ICP Metals - Soil Arsenic **BRL** 0.67 4.15 2.94 NC 89.6 92.3 75 - 125 30 BRL 31.5 79.5 75 - 125 Barium 0.33 107 77.9 122 30 75 - 125 Cadmium BRL 0.33 0.64 < 0.47 NC 96.6 100 30 0.33 15.9 19.4 19.8 93.8 110 75 - 125 Chromium BRL 30 Lead **BRL** 0.33 6.58 7.56 13.9 92.3 99.0 75 - 125 30 Selenium BRL 1.3 <1.9 <1.9 NC 90.7 80.6 75 - 125 30 Silver **BRL** 0.33 < 0.47 < 0.47 NC 89.4 106 75 - 125 30 QA/QC Batch 409780 (mg/kg), QC Sample No: BZ42539 (BZ42539, BZ42540, BZ42541, BZ42542, BZ42543, BZ42544, BZ42545, BZ42546) ICP Metals - Soil Arsenic BRL 0.67 2.36 2.20 NC 106 88.6 75 - 125 30 19.8 0.33 25.5 25.2 89.2 75 - 125 Barium **BRL** 96.2 30 Cadmium **BRL** 0.33 0.38 < 0.32 NC 109 92.8 75 - 125 30 Chromium BRL 0.33 19.5 20.4 4.50 107 95.9 75 - 125 30 Lead BRL 0.33 26.6 31.3 16.2 104 97.0 75 - 125 30 Selenium BRL 1.3 <1.4 <1.3 NC 105 81.7 75 - 125 30 NC 75 - 125 30 Silver BRL 0.33 < 0.34 < 0.32 102 97.6

r = This parameter is outside laboratory RPD specified recovery limits.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

November 28, 2017

QA/QC Data

SDG I.D.: GBZ42536

•												
Parameter	Blank	BIk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 409914 (mg/kg)	, QC Sam	ple No: BZ420	031 10X (BZ42542	2, BZ42	544, BZ	42546)						
Polychlorinated Bipheny	ıls - Soil											
PCB-1016	ND	0.17		68	72	5.7	62	91	37.9	40 - 140	30	r
PCB-1221	ND	0.17								40 - 140	30	
PCB-1232	ND	0.17								40 - 140	30	
PCB-1242	ND	0.17								40 - 140	30	
PCB-1248	ND	0.17								40 - 140	30	
PCB-1254	ND	0.17								40 - 140	30	
PCB-1260	ND	0.17		99	101	2.0	72	105	37.3	40 - 140	30	r
PCB-1262	ND	0.17								40 - 140	30	
PCB-1268	ND	0.17								40 - 140	30	
% DCBP (Surrogate Rec)	96	%		108	107	0.9	76	112	38.3	30 - 150	30	r
% TCMX (Surrogate Rec)	43	%		51	53	3.8	59	97	48.7	30 - 150	30	r
QA/QC Batch 409785 (mg/Kg/ BZ42544, BZ42545, BZ42546		ple No: BZ42	326 (BZ42536, BZ	42537	BZ4253	39, BZ42	2540, I	BZ4254	1, BZ42	2542, B	Z42543	,
TPH by GC (Extractable	Produc	ts) - Soil										
Ext. Petroleum H.C. (C9-C36)	ND	50		90	89	1.1				60 - 120	30	
% n-Pentacosane	82	%		76	77	1.3				50 - 150	30	

^{*}The MS/MSD could not be reported due to the presence of ETPH in the original sample. The LCS was within QA/QC criteria.

Additional surrogate criteria: LCS acceptance range is 60-120% MS acceptance range 50-150%. The ETPH/DRO LCS has been normalized based on the alkane calibration.

QA/QC Batch 410313 (ug/kg), QC Sample No: BZ42326 (BZ42538, BZ42539, BZ42540, BZ42541, BZ42542, BZ42543 (50X), BZ42544, BZ42547 (50X), BZ42548)

Volatiles - Soil

1,1,1,2-Tetrachloroethane	ND	5.0	104	102	1.9	102	105	2.9	70 - 130	30	
1,1,1-Trichloroethane	ND	5.0	96	96	0.0	95	98	3.1	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	3.0	103	105	1.9	101	105	3.9	70 - 130	30	
1,1,2-Trichloroethane	ND	5.0	101	100	1.0	100	103	3.0	70 - 130	30	
1,1-Dichloroethane	ND	5.0	101	99	2.0	102	102	0.0	70 - 130	30	
1,1-Dichloroethene	ND	5.0	96	94	2.1	70	74	5.6	70 - 130	30	
1,1-Dichloropropene	ND	5.0	99	98	1.0	98	100	2.0	70 - 130	30	
1,2,3-Trichlorobenzene	ND	5.0	96	97	1.0	65	67	3.0	70 - 130	30	m
1,2,3-Trichloropropane	ND	5.0	97	101	4.0	98	101	3.0	70 - 130	30	
1,2,4-Trichlorobenzene	ND	5.0	98	99	1.0	74	74	0.0	70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0	96	95	1.0	93	92	1.1	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	5.0	104	110	5.6	94	99	5.2	70 - 130	30	
1,2-Dibromoethane	ND	5.0	100	100	0.0	101	104	2.9	70 - 130	30	
1,2-Dichlorobenzene	ND	5.0	99	97	2.0	94	95	1.1	70 - 130	30	
1,2-Dichloroethane	ND	5.0	94	93	1.1	94	96	2.1	70 - 130	30	
1,2-Dichloropropane	ND	5.0	97	95	2.1	99	101	2.0	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	96	96	0.0	93	92	1.1	70 - 130	30	

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
1,3-Dichlorobenzene	ND	5.0	99	98	1.0	96	95	1.0	70 - 130	30	
1,3-Dichloropropane	ND	5.0	100	99	1.0	101	103	2.0	70 - 130	30	
1,4-Dichlorobenzene	ND	5.0	98	96	2.1	96	95	1.0	70 - 130	30	
2,2-Dichloropropane	ND	5.0	104	102	1.9	107	111	3.7	70 - 130	30	
2-Chlorotoluene	ND	5.0	95	95	0.0	95	96	1.0	70 - 130	30	
2-Hexanone	ND	25	100	106	5.8	95	99	4.1	70 - 130	30	
2-Isopropyltoluene	ND	5.0	107	107	0.0	98	95	3.1	70 - 130	30	
4-Chlorotoluene	ND	5.0	99	97	2.0	98	98	0.0	70 - 130	30	
4-Methyl-2-pentanone	ND	25	105	110	4.7	101	107	5.8	70 - 130	30	
Acetone	ND	10	77	80	3.8	47	50	6.2	70 - 130	30	m
Acrylonitrile	ND	5.0	107	112	4.6	112	114	1.8	70 - 130	30	
Benzene	ND	1.0	97	96	1.0	97	99	2.0	70 - 130	30	
Bromobenzene	ND	5.0	95	96	1.0	98	98	0.0	70 - 130	30	
Bromochloromethane	ND	5.0	100	98	2.0	99	101	2.0	70 - 130	30	
Bromodichloromethane	ND	5.0	97	97	0.0	93	97	4.2	70 - 130	30	
Bromoform	ND	5.0	109	111	1.8	98	102	4.0	70 - 130	30	
Bromomethane	ND	5.0	89	89	0.0	53	61	14.0	70 - 130	30	m
Carbon Disulfide	ND	5.0	116	114	1.7	82	87	5.9	70 - 130	30	
Carbon tetrachloride	ND	5.0	104	104	0.0	93	97	4.2	70 - 130	30	
Chlorobenzene	ND	5.0	101	98	3.0	102	104	1.9	70 - 130	30	
Chloroethane	ND	5.0	92	91	1.1	41	43	4.8	70 - 130	30	m
Chloroform	ND	5.0	94	93	1.1	97	98	1.0	70 - 130	30	
Chloromethane	ND	5.0	87	88	1.1	74	76	2.7	70 - 130	30	
cis-1,2-Dichloroethene	ND	5.0	98	97	1.0	101	100	1.0	70 - 130	30	
cis-1,3-Dichloropropene	ND	5.0	103	100	3.0	100	104	3.9	70 - 130	30	
Dibromochloromethane	ND	3.0	111	109	1.8	104	105	1.0	70 - 130	30	
Dibromomethane	ND	5.0	95	96	1.0	95	98	3.1	70 - 130	30	
Dichlorodifluoromethane	ND	5.0	98	97	1.0	64	64	0.0	70 - 130	30	m
Ethylbenzene	ND	1.0	102	99	3.0	103	102	1.0	70 - 130	30	
Hexachlorobutadiene	ND	5.0	94	96	2.1	60	56	6.9	70 - 130	30	m
Isopropylbenzene	ND	1.0	98	98	0.0	97	97	0.0	70 - 130	30	
m&p-Xylene	ND	2.0	101	99	2.0	101	102	1.0	70 - 130	30	
Methyl ethyl ketone	ND	5.0	98	101	3.0	97	100	3.0	70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	1.0	106	103	2.9	110	113	2.7	70 - 130	30	
Methylene chloride	ND	5.0	88	86	2.3	89	90	1.1	70 - 130	30	
Naphthalene	ND	5.0	101	105	3.9	84	90	6.9	70 - 130	30	
n-Butylbenzene	ND	1.0	97	97	0.0	83	78	6.2	70 - 130	30	
n-Propylbenzene	ND	1.0	97	97	0.0	96	94	2.1	70 - 130	30	
o-Xylene	ND	2.0	103	100	3.0	103	104	1.0	70 - 130	30	
p-Isopropyltoluene	ND	1.0	98	98	0.0	88	85	3.5	70 - 130	30	
sec-Butylbenzene	ND	1.0	100	100	0.0	91	87	4.5	70 - 130	30	
Styrene	ND	5.0	102	99	3.0	102	103	1.0	70 - 130	30	
tert-Butylbenzene	ND	1.0	97	97	0.0	92	90	2.2	70 - 130	30	
Tetrachloroethene	ND	5.0	98	99	1.0	101	102	1.0	70 - 130	30	
Tetrahydrofuran (THF)	ND	5.0	107	114	6.3	115	113	1.8	70 - 130	30	
Toluene	ND	1.0	98	97	1.0	100	103	3.0	70 - 130	30	
trans-1,2-Dichloroethene	ND	5.0	96	95	1.0	92	95	3.2	70 - 130	30	
trans-1,3-Dichloropropene	ND	5.0	100	99	1.0	98	103	5.0	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	5.0	123	129	4.8	117	121	3.4	70 - 130	30	
Trichloroethene	ND	5.0	100	98	2.0	99	102	3.0	70 - 130	30	
Trichlorofluoromethane	ND	5.0	87	85	2.3	30	31	3.3	70 - 130	30	m
Trichlorotrifluoroethane	ND	5.0	107	105	1.9	76	78	2.6	70 - 130	30	
Vinyl chloride	ND	5.0	91	90	1.1	80	82	2.5	70 - 130	30	

SDG I.D.: GBZ42536 % % Blk LCS **LCSD** LCS **MSD RPD** MS MS Rec RPD Blank RL % % % **RPD** Limits Limits % Parameter % 1,2-dichlorobenzene-d4 101 % 101 102 1.0 101 101 0.0 70 - 130 30 % Bromofluorobenzene 97 % 100 100 0.0 99 99 0.0 70 - 130 30 95 % % Dibromofluoromethane 95 96 1.0 95 96 1.0 70 - 130 30 % Toluene-d8 99 % 99 100 1.0 98 99 1.0 70 - 130 30 Comment: Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%. QA/QC Batch 409918 (ug/kg), QC Sample No: BZ42326 10X (BZ42536, BZ42537, BZ42538, BZ42539, BZ42540) Polynuclear Aromatic HC - Soil 2-Methylnaphthalene 130 56 58 3.5 58 30 - 130 30 72 4.3 Acenaphthene ND 130 69 65 30 - 130 30 ND 130 71 7.3 Acenaphthylene 64 30 - 130 30 66 Anthracene ND 130 70 74 5.6 63 30 - 130 30 Benz(a)anthracene ND 130 62 65 4.7 57 30 - 130 30 Benzo(a)pyrene ND 130 63 68 7.6 55 30 - 130 30 ND 130 59 3.3 50 Benzo(b)fluoranthene 61 30 - 130 30 ND 130 58 59 1.7 45 Benzo(ghi)perylene 30 - 130 30 ND 74 Benzo(k)fluoranthene 130 69 7.0 59 30 - 130 30 ND Chrysene 130 64 67 4.6 58 30 - 130 30 Dibenz(a,h)anthracene ND 130 64 64 0.0 56 30 - 130 30 Fluoranthene ND 130 66 0.0 57 66 30 - 130 30 ND Fluorene 130 67 73 8.6 63 30 - 130 30 60 ND 130 61 1.7 52 Indeno(1,2,3-cd)pyrene 30 - 130 30 30 - 130 Naphthalene ND 130 57 57 0.0 59 30 Phenanthrene ND 130 60 60 0.0 55 30 - 130 30 Pyrene ND 130 65 69 6.0 57 30 - 130 30 % 2-Fluorobiphenyl 62 % 63 68 7.6 62 30 - 130 30 % Nitrobenzene-d5 60 % 64 6.1 71 30 - 130 30 68 % Terphenyl-d14 70 % 68 71 4.3 61 30 - 130 30 Comment:

MSD notreported for this batch.

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 410443 (ug/kg), QC Sample No: BZ42540 (BZ42536, BZ42537, BZ42540 (50X))

Volatiles - Soil										
1,1,1,2-Tetrachloroethane	ND	5.0	101	101	0.0	97	95	2.1	70 - 130	30
1,1,1-Trichloroethane	ND	5.0	99	98	1.0	90	90	0.0	70 - 130	30
1,1,2,2-Tetrachloroethane	ND	3.0	97	99	2.0	99	96	3.1	70 - 130	30
1,1,2-Trichloroethane	ND	5.0	92	98	6.3	97	94	3.1	70 - 130	30
1,1-Dichloroethane	ND	5.0	97	98	1.0	96	95	1.0	70 - 130	30
1,1-Dichloroethene	ND	5.0	90	90	0.0	70	71	1.4	70 - 130	30
1,1-Dichloropropene	ND	5.0	95	97	2.1	94	94	0.0	70 - 130	30
1,2,3-Trichlorobenzene	ND	5.0	91	91	0.0	93	89	4.4	70 - 130	30
1,2,3-Trichloropropane	ND	5.0	98	100	2.0	96	89	7.6	70 - 130	30
1,2,4-Trichlorobenzene	ND	5.0	89	91	2.2	94	86	8.9	70 - 130	30
1,2,4-Trimethylbenzene	ND	1.0	90	90	0.0	88	85	3.5	70 - 130	30
1,2-Dibromo-3-chloropropane	ND	5.0	100	104	3.9	96	96	0.0	70 - 130	30
1,2-Dibromoethane	ND	5.0	97	99	2.0	97	94	3.1	70 - 130	30
1,2-Dichlorobenzene	ND	5.0	92	93	1.1	93	90	3.3	70 - 130	30
1,2-Dichloroethane	ND	5.0	94	96	2.1	88	87	1.1	70 - 130	30
1,2-Dichloropropane	ND	5.0	91	93	2.2	94	92	2.2	70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	92	93	1.1	91	88	3.4	70 - 130	30

Blk LCS LCSD LCS MS MSD MS R Parameter Blank RL % % RPD % % RPD Lin	c RPD	<u> </u>
1,3-Dichlorobenzene ND 5.0 90 92 2.2 92 89 3.3 70 -	30 30	
1,3-Dichloropropane ND 5.0 95 96 1.0 96 93 3.2 70 -	30 30	
1,4-Dichlorobenzene ND 5.0 90 91 1.1 91 87 4.5 70 -	30 30	
2,2-Dichloropropane ND 5.0 105 101 3.9 104 103 1.0 70 -	30 30	
2-Chlorotoluene ND 5.0 90 91 1.1 90 88 2.2 70 -	30 30	
2-Hexanone ND 25 96 98 2.1 95 93 2.1 70-	30 30	
2-Isopropyltoluene ND 5.0 102 103 1.0 101 100 1.0 70 -	30 30	
4-Chlorotoluene ND 5.0 90 92 2.2 91 89 2.2 70 -	30 30	
4-Methyl-2-pentanone ND 25 99 105 5.9 101 99 2.0 70 -	30 30	
Acetone ND 10 70 74 5.6 53 51 3.8 70 -	30 30	m
Acrylonitrile ND 5.0 102 106 3.8 109 106 2.8 70 -	30 30	
Benzene ND 1.0 90 92 2.2 93 92 1.1 70 -	30 30	
Bromobenzene ND 5.0 90 92 2.2 90 88 2.2 70 -	30 30	
Bromochloromethane ND 5.0 95 98 3.1 96 94 2.1 70 -	30 30	
Bromodichloromethane ND 5.0 94 97 3.1 88 87 1.1 70 -	30 30	
Bromoform ND 5.0 107 109 1.9 95 94 1.1 70 -	30 30	
Bromomethane ND 5.0 87 86 1.2 62 64 3.2 70 -	30 30	m
Carbon Disulfide ND 5.0 107 106 0.9 85 84 1.2 70 -	30 30	
Carbon tetrachloride ND 5.0 107 106 0.9 91 91 0.0 70 -	30 30	
Chlorobenzene ND 5.0 95 96 1.0 96 93 3.2 70 -	30 30	
Chloroethane ND 5.0 88 89 1.1 42 42 0.0 70 -	30 30	m
Chloroform ND 5.0 93 94 1.1 91 89 2.2 70 -	30 30	
Chloromethane ND 5.0 81 81 0.0 79 79 0.0 70 -	30 30	
cis-1,2-Dichloroethene ND 5.0 89 93 4.4 94 89 5.5 70 -	30 30	
cis-1,3-Dichloropropene ND 5.0 95 98 3.1 95 95 0.0 70 -	30 30	
Dibromochloromethane ND 3.0 105 107 1.9 98 95 3.1 70 -	30 30	
Dibromomethane ND 5.0 92 96 4.3 91 90 1.1 70 -	30 30	
Dichlorodifluoromethane ND 5.0 91 92 1.1 84 83 1.2 70 -	30 30	
Ethylbenzene ND 1.0 96 97 1.0 97 95 2.1 70 -	30 30	
Hexachlorobutadiene ND 5.0 93 94 1.1 94 90 4.3 70 -	30 30	
Isopropylbenzene ND 1.0 92 93 1.1 93 92 1.1 70 -	30 30	
m&p-Xylene ND 2.0 95 96 1.0 96 94 2.1 70-	30 30	
Methyl ethyl ketone ND 5.0 96 95 1.0 97 95 2.1 70 -	30 30	
Methyl t-butyl ether (MTBE) ND 1.0 97 98 1.0 99 97 2.0 70 -	30 30	
Methylene chloride ND 5.0 80 81 1.2 78 77 1.3 70 -	30 30	
Naphthalene ND 5.0 96 98 2.1 95 92 3.2 70 -	30 30	
n-Butylbenzene ND 1.0 92 93 1.1 91 87 4.5 70 -	30 30	
n-Propylbenzene ND 1.0 92 92 0.0 92 91 1.1 70 -	30 30	
o-Xylene ND 2.0 97 98 1.0 97 96 1.0 70 -	30 30	
p-Isopropyltoluene ND 1.0 93 93 0.0 92 90 2.2 70 -	30 30	
sec-Butylbenzene ND 1.0 96 97 1.0 96 94 2.1 70 -	30 30	
Styrene ND 5.0 94 95 1.1 97 95 2.1 70 -	30 30	
tert-Butylbenzene ND 1.0 94 94 0.0 93 92 1.1 70 -	30 30	
Tetrachloroethene ND 5.0 93 95 2.1 93 94 1.1 70 -	30 30	
Tetrahydrofuran (THF) ND 5.0 105 106 0.9 107 106 0.9 70 -	30 30	
Toluene ND 1.0 93 94 1.1 95 95 0.0 70 -	30 30	
trans-1,2-Dichloroethene ND 5.0 90 90 0.0 85 83 2.4 70 -	30 30	
trans-1,3-Dichloropropene ND 5.0 94 97 3.1 94 91 3.2 70 -	30 30	
trans-1,4-dichloro-2-butene ND 5.0 111 113 1.8 108 109 0.9 70 -	30 30	
Trichloroethene ND 5.0 96 97 1.0 96 95 1.0 70 -	30 30	
Trichlorofluoromethane ND 5.0 86 86 0.0 31 30 3.3 70 -	30 30	m
Trichlorotrifluoroethane ND 5.0 104 105 1.0 78 79 1.3 70 -	30 30	
Vinyl chloride ND 5.0 83 82 1.2 81 81 0.0 70 -	30 30	

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
% 1,2-dichlorobenzene-d4	102	%	101	102	1.0	102	101	1.0	70 - 130	30
% Bromofluorobenzene	98	%	101	102	1.0	101	100	1.0	70 - 130	30
% Dibromofluoromethane	94	%	98	97	1.0	94	94	0.0	70 - 130	30
% Toluene-d8	99	%	98	99	1.0	99	100	1.0	70 - 130	30
Comment:										
Additional 8260 criteria: 10% of L	CS/LCSD	compounds can be outside of acco	eptance o	riteria as	long as	recover	y is 40-1	50%.		
QA/QC Batch 409919 (ug/kg),	QC Samp	ole No: BZ42625 10X (BZ4254	1, BZ42	542, BZ4	12543, I	BZ4254	14, BZ42	2545, E	3Z42546)
Polynuclear Aromatic HC		,	,	•	,		,			,
2-Methylnaphthalene	ND	130	59	54	8.8	47	47	0.0	30 - 130	30
Acenaphthene	ND	130	76	72	5.4	58	59	1.7	30 - 130	30
Acenaphthylene	ND	130	68	64	6.1	52	53	1.9	30 - 130	30
Anthracene	ND	130	76	72	5.4	58	57	1.7	30 - 130	30
Benz(a)anthracene	ND	130	64	61	4.8	48	47	2.1	30 - 130	30
Benzo(a)pyrene	ND	130	74	70	5.6	54	54	0.0	30 - 130	30
Benzo(b)fluoranthene	ND	130	64	61	4.8	47	46	2.2	30 - 130	30
Benzo(ghi)perylene	ND	130	69	66	4.4	52	49	5.9	30 - 130	30
Benzo(k)fluoranthene	ND	130	83	78	6.2	63	63	0.0	30 - 130	30
Chrysene	ND	130	77	75	2.6	59	59	0.0	30 - 130	30
Dibenz(a,h)anthracene	ND	130	74	69	7.0	54	51	5.7	30 - 130	30
Fluoranthene	ND	130	68	63	7.6	51	50	2.0	30 - 130	30
Fluorene	ND	130	74	69	7.0	56	55	1.8	30 - 130	30
ndeno(1,2,3-cd)pyrene	ND	130	63	60	4.9	46	43	6.7	30 - 130	30
Naphthalene	ND	130	60	56	6.9	50	51	2.0	30 - 130	30
Phenanthrene	ND	130	67	65	3.0	51	50	2.0	30 - 130	30
Helialitherie	שוו		07	UJ	5.0	J 1	50	2.0	30 - 130	30
	ND		60	65	6.0	E1	50	2.0	20 120	20
Pyrene	ND	130	69 69	65 65	6.0	51 54	50	2.0	30 - 130	30
Pyrene % 2-Fluorobiphenyl	60	130 %	68	65	4.5	54	54	0.0	30 - 130	30
Pyrene % 2-Fluorobiphenyl % Nitrobenzene-d5	60 50	130 % %	68 62	65 58	4.5 6.7	54 51	54 50	0.0 2.0	30 - 130 30 - 130	30 30
Pyrene % 2-Fluorobiphenyl % Nitrobenzene-d5 % Terphenyl-d14 Comment:	60	130 %	68	65	4.5	54	54	0.0	30 - 130	30
Pyrene % 2-Fluorobiphenyl % Nitrobenzene-d5 % Terphenyl-d14 Comment:	60 50 65 ompounds	130 % % % can be outside of acceptance crite	68 62 73	65 58 67	4.5 6.7 8.6	54 51 53	54 50 52	0.0 2.0 1.9	30 - 130 30 - 130 30 - 130	30 30
Pyrene % 2-Fluorobiphenyl % Nitrobenzene-d5 % Terphenyl-d14 Comment: Additional 8270 criteria:20% of co	60 50 65 ompounds amples: 15	130 % % % can be outside of acceptance crite-110%, for soils 30-130%)	68 62 73	65 58 67	4.5 6.7 8.6	54 51 53	54 50 52	0.0 2.0 1.9	30 - 130 30 - 130 30 - 130	30 30
Pyrene % 2-Fluorobiphenyl % Nitrobenzene-d5 % Terphenyl-d14 Comment: Additional 8270 criteria:20% of co acceptance range for aqueous sa	60 50 65 ompounds amples: 15	130 % % % can be outside of acceptance crite -110%, for soils 30-130%) ple No: BZ42985 (BZ42538)	68 62 73	65 58 67	4.5 6.7 8.6	54 51 53	54 50 52	0.0 2.0 1.9	30 - 130 30 - 130 30 - 130	30 30
Pyrene % 2-Fluorobiphenyl % Nitrobenzene-d5 % Terphenyl-d14 Comment: Additional 8270 criteria:20% of contract acceptance range for aqueous sape acceptance (mg/kg) TPH by GC (Extractable)	60 50 65 compounds amples: 15 , QC Sam Produc	130 % % % can be outside of acceptance crite- 110%, for soils 30-130%) ple No: BZ42985 (BZ42538) ts) - Soil	68 62 73 eria as Ion	65 58 67 ng as reco	4.5 6.7 8.6 very is a	54 51 53 at least 1	54 50 52 10%. (Ac	0.0 2.0 1.9 id surro	30 - 130 30 - 130 30 - 130 gates	30 30 30
Pyrene % 2-Fluorobiphenyl % Nitrobenzene-d5 % Terphenyl-d14 Comment: Additional 8270 criteria:20% of coacceptance range for aqueous sa DA/QC Batch 409922 (mg/Kg) FPH by GC (Extractable Ext. Petroleum H.C. (C9-C36)	60 50 65 ompounds amples: 15 , QC Sam Produc	130 % % % can be outside of acceptance crite- 110%, for soils 30-130%) ple No: BZ42985 (BZ42538) ts) - Soil 50	68 62 73 eria as Ion 98	65 58 67 og as reco	4.5 6.7 8.6 vvery is a	54 51 53 at least 1	54 50 52 10%. (Ac	0.0 2.0 1.9 id surro	30 - 130 30 - 130 30 - 130 gates	30 30 30
Pyrene % 2-Fluorobiphenyl % Nitrobenzene-d5 % Terphenyl-d14 Comment: Additional 8270 criteria:20% of coacceptance range for aqueous sa QA/QC Batch 409922 (mg/Kg) TPH by GC (Extractable Ext. Petroleum H.C. (C9-C36)	60 50 65 compounds amples: 15 , QC Sam Produc	130 % % % can be outside of acceptance crite- 110%, for soils 30-130%) ple No: BZ42985 (BZ42538) ts) - Soil	68 62 73 eria as Ion	65 58 67 ng as reco	4.5 6.7 8.6 very is a	54 51 53 at least 1	54 50 52 10%. (Ac	0.0 2.0 1.9 id surro	30 - 130 30 - 130 30 - 130 gates	30 30 30
Pyrene % 2-Fluorobiphenyl % Nitrobenzene-d5 % Terphenyl-d14 Comment: Additional 8270 criteria:20% of control acceptance range for aqueous selected acceptance range for acceptance r	60 50 65 compounds amples: 15 , QC Sam Produci ND 67	130 % % % can be outside of acceptance crite- 110%, for soils 30-130%) ple No: BZ42985 (BZ42538) ts) - Soil 50	68 62 73 ria as Ion 98 81	65 58 67 og as reco 88 85	4.5 6.7 8.6 very is a	54 51 53 at least 1 69 78	54 50 52 10%. (Ac	0.0 2.0 1.9 id surro 1.5 3.9	30 - 130 30 - 130 30 - 130 gates 60 - 120 50 - 150	30 30 30
Pyrene 6 2-Fluorobiphenyl 6 Nitrobenzene-d5 6 Terphenyl-d14 Comment: Additional 8270 criteria:20% of coacceptance range for aqueous sa DA/QC Batch 409922 (mg/Kg) FPH by GC (Extractable Ext. Petroleum H.C. (C9-C36) 6 n-Pentacosane Comment: Additional surrogate criteria: LCS normalized based on the alkane	60 50 65 ompounds amples: 15 , QC Sam Produc ND 67 s acceptanc	130 % % % can be outside of acceptance crite- 110%, for soils 30-130%) ple No: BZ42985 (BZ42538) ts) - Soil 50 % ce range is 60-120% MS acceptance	68 62 73 Fria as Ion 98 81 ce range	65 58 67 og as reco 88 85	4.5 6.7 8.6 very is a	54 51 53 at least 1 69 78	54 50 52 10%. (Ac	0.0 2.0 1.9 id surro 1.5 3.9	30 - 130 30 - 130 30 - 130 gates 60 - 120 50 - 150	30 30 30
Pyrene % 2-Fluorobiphenyl % Nitrobenzene-d5 % Terphenyl-d14 Comment: Additional 8270 criteria:20% of coacceptance range for aqueous sa QA/QC Batch 409922 (mg/Kg) FPH by GC (Extractable Ext. Petroleum H.C. (C9-C36) % n-Pentacosane Comment: Additional surrogate criteria: LCS normalized based on the alkane of	60 50 65 ompounds amples: 15 , QC Sam Produc ND 67 s acceptanc	130 % % % can be outside of acceptance crite- 110%, for soils 30-130%) ple No: BZ42985 (BZ42538) ts) - Soil 50 % ce range is 60-120% MS acceptance	68 62 73 Fria as Ion 98 81 ce range	65 58 67 og as reco 88 85	4.5 6.7 8.6 very is a	54 51 53 at least 1 69 78	54 50 52 10%. (Ac	0.0 2.0 1.9 id surro 1.5 3.9	30 - 130 30 - 130 30 - 130 gates 60 - 120 50 - 150	30 30 30
Pyrene % 2-Fluorobiphenyl % Nitrobenzene-d5 % Terphenyl-d14 Comment: Additional 8270 criteria:20% of control acceptance range for aqueous selected acceptance range for acceptance for acceptance range for accep	60 50 65 compounds amples: 15 , QC Sam Produc' ND 67 6 acceptanc calibration. QC Samp	130 % % % % can be outside of acceptance crite- 110%, for soils 30-130%) ple No: BZ42985 (BZ42538) ts) - Soil 50 % ce range is 60-120% MS acceptan ole No: BZ43250 (BZ42545, BZ	68 62 73 ria as Ion 98 81 ce range 242546)	65 58 67 g as reco 88 85 50-150%	4.5 6.7 8.6 very is a 10.8 4.8	54 51 53 at least 1 69 78	54 50 52 10%. (Ac 68 75	0.0 2.0 1.9 id surro 1.5 3.9	30 - 130 30 - 130 30 - 130 gates 60 - 120 50 - 150	30 30 30 30
Pyrene % 2-Fluorobiphenyl % Nitrobenzene-d5 % Terphenyl-d14 Comment: Additional 8270 criteria:20% of control acceptance range for aqueous separate and provided the separate s	ompounds amples: 15 , QC Sam Produc ND 67 acceptanc calibration. QC Samp	130 % % % can be outside of acceptance crite- 110%, for soils 30-130%) ple No: BZ42985 (BZ42538) ts) - Soil 50 % ce range is 60-120% MS acceptan ble No: BZ43250 (BZ42545, BZ	68 62 73 Fria as Ion 98 81 Ce range 742546)	65 58 67 ag as reco 88 85 50-150%	4.5 6.7 8.6 every is a 10.8 4.8 5. The E	54 51 53 at least 1 69 78 TPH/DR	54 50 52 10%. (Ac 68 75 CO LCS h	0.0 2.0 1.9 id surro 1.5 3.9 as beet	30 - 130 30 - 130 30 - 130 gates 60 - 120 50 - 150	30 30 30 30 30
Pyrene 6 2-Fluorobiphenyl 6 Nitrobenzene-d5 6 Terphenyl-d14 Comment: Additional 8270 criteria:20% of coacceptance range for aqueous sa QA/QC Batch 409922 (mg/Kg) FPH by GC (Extractable Ext. Petroleum H.C. (C9-C36) 6 n-Pentacosane Comment: Additional surrogate criteria: LCS normalized based on the alkane of QA/QC Batch 410328 (ug/kg), //olatiles - Soil ,1,1,2-Tetrachloroethane ,1,1-Trichloroethane	ompounds amples: 15 , QC Sam Produc ND 67 acceptanc calibration. QC Samp	130 % % % % can be outside of acceptance crite -110%, for soils 30-130%) ple No: BZ42985 (BZ42538) ts) - Soil 50 % ce range is 60-120% MS acceptan ole No: BZ43250 (BZ42545, BZ 5.0 5.0	68 62 73 Fria as Ion 98 81 ce range (42546) 105 106	65 58 67 ag as reco 88 85 50-150%	4.5 6.7 8.6 very is a 10.8 4.8 5. The E	54 51 53 at least 1 69 78 TPH/DR	54 50 52 10%. (Ac	0.0 2.0 1.9 dd surro 1.5 3.9 as beet	30 - 130 30 - 130 30 - 130 gates 60 - 120 50 - 150	30 30 30 30 30 30
Pyrene % 2-Fluorobiphenyl % Nitrobenzene-d5 % Terphenyl-d14 Comment: Additional 8270 criteria:20% of coacceptance range for aqueous sa QA/QC Batch 409922 (mg/Kg) FPH by GC (Extractable Ext. Petroleum H.C. (C9-C36) % n-Pentacosane Comment: Additional surrogate criteria: LCS normalized based on the alkane of QA/QC Batch 410328 (ug/kg), //olatiles - Soil 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane	ompounds amples: 15 , QC Sam Produc ND 67 Sacceptanc calibration. QC Samp ND ND ND	130 % % % % can be outside of acceptance crite -110%, for soils 30-130%) ple No: BZ42985 (BZ42538) ts) - Soil 50 % ce range is 60-120% MS acceptan ble No: BZ43250 (BZ42545, BZ 5.0 5.0 3.0	68 62 73 Fria as Ion 98 81 ce range 242546) 105 106 105	65 58 67 ag as reco 88 85 50-150% 102 104 105	4.5 6.7 8.6 every is a 10.8 4.8 5. The E ²	54 51 53 at least 1 69 78 TPH/DR 92 101 94	54 50 52 10%. (Ac 68 75 O LCS h	0.0 2.0 1.9 id surro 1.5 3.9 as beet	30 - 130 30 - 130 30 - 130 gates 60 - 120 50 - 150 n 70 - 130 70 - 130	30 30 30 30 30 30 30 30
Pyrene % 2-Fluorobiphenyl % Nitrobenzene-d5 % Terphenyl-d14 Comment: Additional 8270 criteria:20% of control acceptance range for aqueous separate and acceptance range for aqueous separate acceptance range for acceptance acceptance acceptance range for acceptance acceptance acceptance range for acceptance	ompounds amples: 15 , QC Sam Produc ND 67 Sacceptanc calibration. QC Samp ND ND ND ND	130 % % % % can be outside of acceptance crite -110%, for soils 30-130%) ple No: BZ42985 (BZ42538) ts) - Soil 50 % ce range is 60-120% MS acceptant ble No: BZ43250 (BZ42545, BZ 5.0 5.0 3.0 5.0	68 62 73 Fria as lon 98 81 ce range 742546) 105 106 105 98	65 58 67 g as reco 88 85 50-150% 102 104 105 100	4.5 6.7 8.6 very is a 10.8 4.8 5. The E ⁻¹	54 51 53 at least 1 69 78 TPH/DR 92 101 94 94	54 50 52 10%. (Ac 68 75 CO LCS h	0.0 2.0 1.9 id surro 1.5 3.9 as beet	30 - 130 30 - 130 30 - 130 gates 60 - 120 50 - 150 n 70 - 130 70 - 130 70 - 130	30 30 30 30 30 30 30 30
Pyrene % 2-Fluorobiphenyl % Nitrobenzene-d5 % Terphenyl-d14 Comment: Additional 8270 criteria:20% of control acceptance range for aqueous separate for acceptance range for acceptance acceptance range for acceptance acceptance acceptance acceptance range for acceptance acce	ompounds amples: 15 , QC Sam Produc ND 67 acceptanc calibration. QC Samp ND ND ND ND ND ND ND	130 % % % % % can be outside of acceptance crite -110%, for soils 30-130%) ple No: BZ42985 (BZ42538) ts) - Soil 50 % ce range is 60-120% MS acceptan ble No: BZ43250 (BZ42545, BZ 5.0 5.0 5.0 5.0 5.0 5.0	68 62 73 Fria as lon 98 81 ce range 742546) 105 106 105 98 106	65 58 67 ag as reco 88 85 50-150% 102 104 105 100 104	4.5 6.7 8.6 very is a 10.8 4.8 5. The E	54 51 53 at least 1 69 78 TPH/DR 92 101 94 94 103	54 50 52 10%. (Ac 68 75 20 LCS h 100 98 94 102	0.0 2.0 1.9 id surro 1.5 3.9 as been 2.2 1.0 4.2 0.0 1.0	30 - 130 30 - 130 30 - 130 gates 60 - 120 50 - 150 n 70 - 130 70 - 130 70 - 130 70 - 130	30 30 30 30 30 30 30 30 30
Pyrene % 2-Fluorobiphenyl % Nitrobenzene-d5 % Terphenyl-d14 Comment: Additional 8270 criteria:20% of control acceptance range for aqueous separate acceptance for accept	ompounds amples: 15 , QC Sam Produc ND 67 acceptanc calibration. QC Samp ND	130 % % % % % can be outside of acceptance crite -110%, for soils 30-130%) ple No: BZ42985 (BZ42538) ts) - Soil 50 % ce range is 60-120% MS acceptan ole No: BZ43250 (BZ42545, BZ 5.0 5.0 5.0 5.0 5.0 5.0 5.0	68 62 73 Fria as lon 98 81 ce range 242546) 105 98 106 108	65 58 67 g as reco 88 85 50-150% 102 104 105 100 104 102	4.5 6.7 8.6 very is a 10.8 4.8 5. The E ² 2.9 1.9 0.0 2.0 1.9 5.7	54 51 53 at least 1 69 78 TPH/DR 92 101 94 94 103 98	54 50 52 10%. (Ac 68 75 20 LCS h 100 98 94 100 97	0.0 2.0 1.9 id surro 1.5 3.9 as been 2.2 1.0 4.2 0.0 1.0	30 - 130 30 - 130 30 - 130 gates 60 - 120 50 - 150 n 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	30 30 30 30 30 30 30 30 30 30 30
Pyrene % 2-Fluorobiphenyl % Nitrobenzene-d5 % Terphenyl-d14 Comment: Additional 8270 criteria:20% of control acceptance range for aqueous separate acceptance range for acceptance acceptance range for acceptance acceptance range for acceptance range fo	ompounds amples: 15 , QC Sam Produc ND 67 acceptanc calibration. QC Samp ND	130 % % % % can be outside of acceptance crite- 110%, for soils 30-130%) ple No: BZ42985 (BZ42538) ts) - Soil 50 % ce range is 60-120% MS acceptan ole No: BZ43250 (BZ42545, BZ 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	68 62 73 Fria as lon 98 81 ce range 742546) 105 98 106 108 105	65 58 67 ag as reco 88 85 50-150% 102 104 105 100 104 102 104	4.5 6.7 8.6 very is a 10.8 4.8 5. The E ² 2.9 1.9 0.0 2.0 1.9 5.7 1.0	54 51 53 at least 1 69 78 TPH/DR 92 101 94 103 98 101	54 50 52 10%. (Ac 68 75 CO LCS h 100 98 94 102 97 100	0.0 2.0 1.9 id surro 1.5 3.9 as beet 2.2 1.0 4.2 0.0 1.0 1.0	30 - 130 30 - 130 30 - 130 gates 60 - 120 50 - 150 n 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	30 30 30 30 30 30 30 30 30 30 30
Pyrene % 2-Fluorobiphenyl % Nitrobenzene-d5 % Terphenyl-d14 Comment: Additional 8270 criteria:20% of coacceptance range for aqueous sa QA/QC Batch 409922 (mg/Kg) FPH by GC (Extractable Ext. Petroleum H.C. (C9-C36) % n-Pentacosane Comment: Additional surrogate criteria: LCS normalized based on the alkane of QA/QC Batch 410328 (ug/kg), Volatiles - Soil 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Tichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethene 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene	ompounds amples: 15 , QC Sam Produc ND 67 acceptanc calibration. QC Samp ND	130 % % % % can be outside of acceptance crite -110%, for soils 30-130%) pple No: BZ42985 (BZ42538) ts) - Soil 50 % ce range is 60-120% MS acceptan ble No: BZ43250 (BZ42545, BZ 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	68 62 73 Fria as lon 98 81 ce range 742546) 105 106 105 98 106 108 105 104	65 58 67 ag as reco 88 85 50-150% 102 104 105 100 104 102 104 103	4.5 6.7 8.6 very is a 10.8 4.8 5. The E ² 2.9 1.9 0.0 2.0 1.9 5.7 1.0	54 51 53 at least 1 69 78 FPH/DR 92 101 94 103 98 101 85	54 50 52 10%. (Ac 68 75 40 LCS h 100 98 94 102 97 100 87	0.0 2.0 1.9 did surro 1.5 3.9 as beet 2.2 1.0 4.2 0.0 1.0 1.0 2.3	30 - 130 30 - 130 30 - 130 gates 60 - 120 50 - 150 n 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	30 30 30 30 30 30 30 30 30 30 30 30
Pyrene % 2-Fluorobiphenyl % Nitrobenzene-d5 % Terphenyl-d14 Comment: Additional 8270 criteria:20% of control acceptance range for aqueous selected acceptance range for acceptance r	ompounds amples: 15 , QC Sam Produc ND 67 acceptanc calibration. QC Samp ND	130 % % % % can be outside of acceptance crite- 110%, for soils 30-130%) ple No: BZ42985 (BZ42538) ts) - Soil 50 % ce range is 60-120% MS acceptan ole No: BZ43250 (BZ42545, BZ 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	68 62 73 Fria as lon 98 81 ce range 742546) 105 98 106 108 105	65 58 67 ag as reco 88 85 50-150% 102 104 105 100 104 102 104	4.5 6.7 8.6 very is a 10.8 4.8 5. The E ² 2.9 1.9 0.0 2.0 1.9 5.7 1.0	54 51 53 at least 1 69 78 TPH/DR 92 101 94 103 98 101	54 50 52 10%. (Ac 68 75 CO LCS h 100 98 94 102 97 100	0.0 2.0 1.9 id surro 1.5 3.9 as beet 2.2 1.0 4.2 0.0 1.0 1.0	30 - 130 30 - 130 30 - 130 gates 60 - 120 50 - 150 n 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	30 30 30 30 30 30 30 30 30 30 30

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
1,2-Dibromo-3-chloropropane	ND	5.0	106	107	0.9	86	90	4.5	70 - 130	30
1,2-Dibromoethane	ND	5.0	97	97	0.0	88	91	3.4	70 - 130	30
1,2-Dichlorobenzene	ND	5.0	104	102	1.9	92	92	0.0	70 - 130	30
1,2-Dichloroethane	ND	5.0	101	102	1.0	94	95	1.1	70 - 130	30
1,2-Dichloropropane	ND	5.0	103	102	1.0	98	98	0.0	70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	104	102	1.9	97	95	2.1	70 - 130	30
1,3-Dichlorobenzene	ND	5.0	101	99	2.0	90	89	1.1	70 - 130	30
1,3-Dichloropropane	ND	5.0	97	96	1.0	88	89	1.1	70 - 130	30
1,4-Dichlorobenzene	ND	5.0	103	101	2.0	90	90	0.0	70 - 130	30
2,2-Dichloropropane	ND	5.0	115	113	1.8	106	102	3.8	70 - 130	30
2-Chlorotoluene	ND	5.0	103	101	2.0	95	94	1.1	70 - 130	30
2-Hexanone	ND	25	92	97	5.3	78	85	8.6	70 - 130	30
2-Isopropyltoluene	ND	5.0	114	112	1.8	105	103	1.9	70 - 130	30
4-Chlorotoluene	ND	5.0	101	99	2.0	92	90	2.2	70 - 130	30
4-Methyl-2-pentanone	ND	25	102	106	3.8	91	97	6.4	70 - 130	30
Acetone	ND	10	76	81	6.4	90	90	0.0	70 - 130	30
Acrylonitrile	ND	5.0	103	106	2.9	90	93	3.3	70 - 130	30
Benzene	ND	1.0	101	99	2.0	97	96	1.0	70 - 130	30
Bromobenzene	ND	5.0	103	100	3.0	94	94	0.0	70 - 130	30
Bromochloromethane	ND	5.0	98	96	2.1	94	94	0.0	70 - 130	30
Bromodichloromethane	ND	5.0	108	107	0.9	99	100	1.0	70 - 130	30
Bromoform	ND	5.0	104	105	1.0	84	88	4.7	70 - 130	30
Bromomethane	ND	5.0	105	101	3.9	92	91	1.1	70 - 130	30
Carbon Disulfide	ND	5.0	119	115	3.4	106	106	0.0	70 - 130	30
Carbon tetrachloride	ND	5.0	112	109	2.7	102	102	0.0	70 - 130	30
Chlorobenzene	ND	5.0	102	100	2.0	94	93	1.1	70 - 130	30
Chloroethane	ND	5.0	117	110	6.2	107	104	2.8	70 - 130	30
Chloroform	ND	5.0	98	98	0.0	95	96	1.0	70 - 130	30
Chloromethane	ND	5.0	107	102	4.8	92	90	2.2	70 - 130	30
cis-1,2-Dichloroethene	ND	5.0	105	101	3.9	101	99	2.0	70 - 130	30
cis-1,3-Dichloropropene	ND	5.0	112	108	3.6	102	101	1.0	70 - 130	30
Dibromochloromethane	ND	3.0	112	108	3.6	98	98	0.0	70 - 130	30
Dibromomethane	ND	5.0	104	103	1.0	97	96	1.0	70 - 130	30
Dichlorodifluoromethane	ND	5.0	117	113	3.5	92	92	0.0	70 - 130	30
Ethylbenzene	ND	1.0	102	101	1.0	95	94	1.1	70 - 130	30
Hexachlorobutadiene	ND	5.0	112	110	1.8	93	93	0.0	70 - 130	30
Isopropylbenzene	ND	1.0	106	105	0.9	101	98	3.0	70 - 130	30
m&p-Xylene	ND	2.0	100	99	1.0	94	93	1.1	70 - 130	30
Methyl ethyl ketone	ND	5.0	92	91	1.1	81	83	2.4	70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	103	101	2.0	96	97	1.0	70 - 130	30
Methylene chloride	ND	5.0	76	73	4.0	79	78	1.3	70 - 130	30
Naphthalene	ND	5.0	102	107	4.8	89	93	4.4	70 - 130	30
n-Butylbenzene	ND	1.0	112	110	1.8	101	99	2.0	70 - 130	30
n-Propylbenzene	ND	1.0	108	105	2.8	100	97	3.0	70 - 130	30
o-Xylene	ND	2.0	102	101	1.0	97	95	2.1	70 - 130	30
p-Isopropyltoluene	ND	1.0	108	106	1.9	99	97	2.0	70 - 130	30
sec-Butylbenzene	ND	1.0	109	108	0.9	102	101	1.0	70 - 130	30
Styrene	ND	5.0	98	97	1.0	91	90	1.1	70 - 130	30
tert-Butylbenzene	ND	1.0	107	105	1.9	100	98	2.0	70 - 130	30
Tetrachloroethene	ND	5.0	109	108	0.9	105	102	2.9	70 - 130	30
Tetrahydrofuran (THF)	ND	5.0	92	97	5.3	84	91	8.0	70 - 130	30
Toluene	ND	1.0	105	104	1.0	101	98	3.0	70 - 130	30
trans-1,2-Dichloroethene	ND	5.0	104	102	1.9	98	97	1.0	70 - 130	30

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
trans-1,3-Dichloropropene	ND	5.0	107	105	1.9	95	94	1.1	70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0	120	122	1.7	96	102	6.1	70 - 130	30
Trichloroethene	ND	5.0	103	102	1.0	97	95	2.1	70 - 130	30
Trichlorofluoromethane	ND	5.0	112	109	2.7	102	102	0.0	70 - 130	30
Trichlorotrifluoroethane	ND	5.0	115	114	0.9	107	104	2.8	70 - 130	30
Vinyl chloride	ND	5.0	110	107	2.8	96	96	0.0	70 - 130	30
% 1,2-dichlorobenzene-d4	94	%	102	102	0.0	101	102	1.0	70 - 130	30
% Bromofluorobenzene	100	%	100	99	1.0	98	99	1.0	70 - 130	30
% Dibromofluoromethane	102	%	97	98	1.0	98	98	0.0	70 - 130	30
% Toluene-d8 Comment:	90	%	103	103	0.0	104	104	0.0	70 - 130	30

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GBZ42536

November 28, 2017

m = This parameter is outside laboratory MS/MSD specified recovery limits.

r = This parameter is outside laboratory RPD specified recovery limits.

Tuesday, November 28, 2017

Sample Criteria Exceedances Report

Criteria: CT: GAM, RC **GBZ42536 - FO-PCB** State: CT

Otato.	0
N N I -	

State:	CT						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BZ42539	\$8100SIMSM	Indeno(1,2,3-cd)pyrene	CT / RSR DEC RES (mg/kg) / APS Organics	4800	140	1000	1000	ug/Kg
BZ42539	\$8100SIMSM	Benzo(a)pyrene	CT / RSR DEC RES (mg/kg) / Semivolatiles	4800	140	1000	1000	ug/Kg
BZ42539	\$8100SIMSM	Benz(a)anthracene	CT / RSR DEC RES (mg/kg) / Semivolatiles	2100	140	1000	1000	ug/Kg
BZ42539	\$8100SIMSM	Benzo(b)fluoranthene	CT / RSR DEC RES (mg/kg) / Semivolatiles	3900	140	1000	1000	ug/Kg
BZ42539	\$8100SIMSM	Benzo(ghi)perylene	CT / RSR GA,GAA (mg/kg) / APS Organics	4100	140	1000	1000	ug/Kg
BZ42539	\$8100SIMSM	Chrysene	CT / RSR GA,GAA (mg/kg) / APS Organics	3000	140	1000	1000	ug/Kg
BZ42539	\$8100SIMSM	Indeno(1,2,3-cd)pyrene	CT / RSR GA,GAA (mg/kg) / APS Organics	4800	140	1000	1000	ug/Kg
BZ42539	\$8100SIMSM	Benzo(k)fluoranthene	CT / RSR GA,GAA (mg/kg) / Semivolatiles	3200	140	1000	1000	ug/Kg
BZ42539	\$8100SIMSM	Benzo(b)fluoranthene	CT / RSR GA,GAA (mg/kg) / Semivolatiles	3900	140	1000	1000	ug/Kg
BZ42539	\$8100SIMSM	Benzo(a)pyrene	CT / RSR GA,GAA (mg/kg) / Semivolatiles	4800	140	1000	1000	ug/Kg
BZ42539	\$8100SIMSM	Benz(a)anthracene	CT / RSR GA,GAA (mg/kg) / Semivolatiles	2100	140	1000	1000	ug/Kg
BZ42543	\$8260MAR	1,2-Dibromoethane	CT / RSR DEC RES (mg/kg) / Volatiles	ND	28	7	7	ug/Kg
BZ42543	\$8260MAR	1,2-Dibromo-3-chloropropane	CT / RSR GA,GAA (mg/kg) / APS Organics	ND	57	5	5	ug/Kg
BZ42543	\$8260MAR	Tetrahydrofuran (THF)	CT / RSR GA,GAA (mg/kg) / APS Organics	ND	140	80	80	ug/Kg
BZ42543	\$8260MAR	Bromodichloromethane	CT / RSR GA,GAA (mg/kg) / APS Organics	ND	57	20	20	ug/Kg
BZ42543	\$8260MAR	Bromomethane	CT / RSR GA,GAA (mg/kg) / APS Organics	ND	110	70	70	ug/Kg
BZ42543	\$8260MAR	1,1,2,2-Tetrachloroethane	CT / RSR GA,GAA (mg/kg) / Volatiles	ND	57	10	10	ug/Kg
BZ42543	\$8260MAR	1,2-Dibromoethane	CT / RSR GA,GAA (mg/kg) / Volatiles	ND	28	10	10	ug/Kg
BZ42543	\$8260MAR	1,2-Dichloroethane	CT / RSR GA,GAA (mg/kg) / Volatiles	ND	28	20	20	ug/Kg
BZ42543	\$8260MAR	Acrylonitrile	CT / RSR GA,GAA (mg/kg) / Volatiles	ND	28	10	10	ug/Kg
BZ42543	\$8260MAR	Benzene	CT / RSR GA,GAA (mg/kg) / Volatiles	ND	28	20	20	ug/Kg
BZ42543	\$8260MAR	Dibromochloromethane	CT / RSR GA,GAA (mg/kg) / Volatiles	ND	57	10	10	ug/Kg
BZ42543	\$8260MAR	Methylene chloride	CT / RSR GA,GAA (mg/kg) / Volatiles	ND	280	100	100	ug/Kg
BZ42543	\$8260MAR	1,1,1,2-Tetrachloroethane	CT / RSR GA,GAA (mg/kg) / Volatiles	ND	57	20	20	ug/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Phoenix Environmental Labs, Inc. Client: Fuss & O'Neill, Inc.

Project Location: CT DOT HIGGANUM MAINTENANCE Project Number:

Laboratory Sample ID(s): BZ42536-BZ42548 Sampling Date(s): 11/15/2017

List RCP Methods Used (e.g., 8260, 8270, et cetera) 6010, 7470/7471, 8082, 8260, 8270, ETPH

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✓ Yes □ No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	<u>VPH and EPH methods only:</u> Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods)	☐ Yes ☐ No ☑ NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	✓ Yes □ No □ NA
4	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents acheived? See Sections: ICP Narration, VOA Narration.	☐ Yes ☑ No
5	a) Were reporting limits specified or referenced on the chain-of-custody?	✓ Yes □ No
	b) Were these reporting limits met?	☐ Yes 🗹 No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	☐ Yes 🗹 No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	✓ Yes □ No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.
Authorized Signature: Position: Project Manager
Printed Name: Ethan Lee Date: Tuesday, November 28, 2017
Name of Laboratory Phoenix Environmental Labs, Inc.

This certification form is to be used for RCP methods only.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

November 28, 2017 SDG I.D.: GBZ42536

SDG Comments

Metals Analysis:

The client requested a shorter list of elements than the 6010 RCP list. Only the RCRA 8 Metals are reported as requested on the chain of custody.

8270 Semi-volatile Organics:

The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-of-custody.

BZ42543 - Sample(s) required a dilution for Volatiles due to the presence of target and/or non-target compounds. This resulted in elevated reporting limits that exceed the requested criteria for one or more analytes.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-FID1 11/20/17-1

Jeff Bucko, Chemist 11/20/17

BZ42539

The initial calibration (ETPHO18I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-FID11 11/17/17-1

Jeff Bucko, Chemist 11/17/17

BZ42545

The initial calibration (ETPHO26I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-FID21 11/17/17-1

Jeff Bucko, Chemist 11/17/17

BZ42536, BZ42537, BZ42541, BZ42542, BZ42543, BZ42544, BZ42546

The initial calibration (ETPHN13I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-FID21 11/22/17-1

Jeff Bucko, Chemist 11/22/17

BZ42540

The initial calibration (ETPHN13I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-XL2 11/17/17-1

Jeff Bucko, Chemist 11/17/17

BZ42538

The initial calibration (ETPHO23I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

QC (Batch Specific):

Batch 409785 (BZ42326)

BZ42536, BZ42537, BZ42539, BZ42540, BZ42541, BZ42542, BZ42543, BZ42544, BZ42545, BZ42546

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

*The MS/MSD could not be reported due to the presence of ETPH in the original sample. The LCS was within QA/QC criteria. Additional surrogate criteria: LCS acceptance range is 60-120% MS acceptance range 50-150%. The ETPH/DRO LCS has been

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

November 28, 2017 SDG I.D.: GBZ42536

ETPH Narration

normalized based on the alkane calibration.

Batch 409922 (BZ42985)

BZ42538

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional surrogate criteria: LCS acceptance range is 60-120% MS acceptance range 50-150%. The ETPH/DRO LCS has been normalized based on the alkane calibration.

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

MERLIN 11/17/17 08:24

Rick Schweitzer, Chemist 11/17/17

BZ42536, BZ42537, BZ42538, BZ42539, BZ42540, BZ42541, BZ42542, BZ42543

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

MERLIN 11/20/17 08:06

Rick Schweitzer, Chemist 11/20/17

BZ42544, BZ42545, BZ42546

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 409829 (BZ41805)

BZ42536, BZ42537, BZ42538, BZ42539, BZ42540, BZ42541, BZ42542, BZ42543

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. MS acceptance range is 75-125%.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. MS acceptance range is 75-125%.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Certification Report

November 28, 2017 SDG I.D.: GBZ42536

Mercury Narration

Batch 410035 (BZ32852)

BZ42544, BZ42545, BZ42546

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. MS acceptance range is 75-

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. MS acceptance range is 75-125%.

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? No.

QC Batch 409779 (Samples: BZ42536, BZ42537, BZ42538): -----

The Sample/Duplicate RPD exceeds the method criteria for one or more analytes, therefore there may be variability in the reported result. (Barium)

Instrument:

ARCOS 11/16/17 08:55

Mike Arsenault, Chemist 11/16/17 BZ42536, BZ42537, BZ42538, BZ42539, BZ42540, BZ42541, BZ42542, BZ42543, BZ42544, BZ42545, BZ42546

Additional criteria for CCV and ICSAB:

Sodium and Potassium are poor performing elements, the laboratory's in-house limits are 85-115% (CCV) and 70-130% (ICSAB). The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 409779 (BZ42314)

BZ42536, BZ42537, BZ42538

All LCS recoveries were within 75 - 125 with the following exceptions: None.

QC (Site Specific):

Batch 409780 (BZ42539)

BZ42539, BZ42540, BZ42541, BZ42542, BZ42543, BZ42544, BZ42545, BZ42546

All LCS recoveries were within 75 - 125 with the following exceptions: None.

All MS recoveries were within 75 - 125 with the following exceptions: None.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

November 28, 2017 SDG I.D.: GBZ42536

PCB Narration

AU-ECD6 11/17/17-1

Adam Werner, Chemist 11/17/17

BZ42542, BZ42544, BZ42546

The initial calibration (PC906Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC906Bl) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 409914 (BZ42031)

BZ42542, BZ42544, BZ42546

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

SVOASIM Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

<u>CHEM06 11/16/17-2</u> Damien Drobinski, Chemist 11/16/17

BZ42536, BZ42537, BZ42538, BZ42539, BZ42540

Initial Calibration Verification (CHEM06/BNSIM_1023):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM06/1116_33-BNSIM_1023):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

CHEM25 11/16/17-2 Damien Drobinski, Chemist 11/16/17

BZ42541, BZ42542, BZ42543, BZ42544, BZ42545, BZ42546

Initial Calibration Verification (CHEM25/BNSIM_1109):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM25/1116 35-BNSIM 1109):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

November 28, 2017 SDG I.D.: GBZ42536

SVOASIM Narration

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 409918 (BZ42326)

BZ42536, BZ42537, BZ42538, BZ42539, BZ42540

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

MSD notreported for this batch.

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Batch 409919 (BZ42625)

BZ42541, BZ42542, BZ42543, BZ42544, BZ42545, BZ42546

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 410443 (Samples: BZ42536, BZ42537, BZ42540): -----

The LCS/LCSD recovery is acceptable. One or more analytes in the site specific matrix spike recovery is below the method criteria, therefore a low bias is likely. (Acetone, Bromomethane, Chloroethane, Trichlorofluoromethane)

Instrument:

CHEM03 11/18/17-1

Jane Li, Chemist 11/18/17

BZ42538, BZ42539, BZ42540, BZ42541, BZ42542, BZ42543, BZ42544, BZ42547, BZ42548

Initial Calibration Verification (CHEM03/VT-L1030):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: Acetone 21% (20%)

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM03/1118L01-VT-L1030):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

November 28, 2017 SDG I.D.: GBZ42536

VOA Narration

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

CHEM03 11/19/17-2

Jane Li, Chemist 11/19/17

BZ42536, BZ42537, BZ42540

Initial Calibration Verification (CHEM03/VT-L1030):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: Acetone 21% (20%)

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM03/1119L35-VT-L1030):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

CHEM18 11/19/17-1

Jane Li, Chemist 11/19/17

BZ42545, BZ42546

Initial Calibration Verification (CHEM18/VT-M1117):

98% of target compounds met criteria.

The following compounds had %RSDs >20%: Chloroethane 22% (20%), Methylene chloride 37% (20%)

The following compounds did not meet recommended response factors: Acetone 0.086 (0.1)

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM18/1119M02-VT-M1117):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 410313 (BZ42326)

BZ42538, BZ42539, BZ42540, BZ42541, BZ42542, BZ42543, BZ42544, BZ42547, BZ42548

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%. Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Batch 410328 (BZ43250)

BZ42545, BZ42546

All LCS recoveries were within 70 - 130 with the following exceptions: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

November 28, 2017 SDG I.D.: GBZ42536

VOA Narration

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%. Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QC (Site Specific):

Batch 410443 (BZ42540)

BZ42536, BZ42537, BZ42540

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 70 - 130 with the following exceptions: Acetone(53%), Bromomethane(62%), Chloroethane(42%), Trichlorofluoromethane(31%)

All MSD recoveries were within 70 - 130 with the following exceptions: Acetone(51%), Bromomethane(64%), Chloroethane(42%), Trichlorofluoromethane(30%)

All MS/MSD RPDs were less than 30% with the following exceptions: None.

A matrix effect is suspected when a MS/MSD recovery is outside of criteria. No further action is required if LCS/LCSD compounds are within criteria.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%. Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Temperature Narration

The samples were received at 1.6C with cooling initiated. (Note acceptance criteria is above freezing up to 6°C)

X 146 Hartford Road, Manchester, CT 06040

56 Quarry Road, Trumbull, CT 06611

119 Richland Street, Columbia, SC 29201

☐ 78 Interstate Drive, West Springfield, MA 0108

10mg1

□ 317 Iron Horse Way, Suite 204, Providence, R1 □ 80 Washington Street, Suite 301, Poughkeepsie,

66				ì)	1	
02908							
ž.	Other						
[]		1	Name of the last o			2,-4, 854	ومخطاراتها أأفادوا
P.	***		Tumaround	around A		~	1.
		100	10000		7	TWEET	T. CONSTRUCTOR
	C124.Hour* (.) 72 Hour*	U 72 H	our	_	□ Other		(days)
	🗆 48-Hour* 🗴 Standard (_	Stank		days) *	Surchar	*Surcharge Applies	
				,			

								Tumaround & States	
	CH	CHAIN-OF-CUSTODY RECORD	DY RECC		38419		C124-Hour C172 Hour	1 1	(days)
	Pacamera Make		Notation Leading			December: Nickense	□ 48-Hour* 🔏 Standard (days) "Surcharge Applies Tabob Alexandr	
	FRUJECT INMA		rkujeci iaacaiior	7		PROJECT INCRESSE		LABUKATUKY	
CT IN	TO HEGGE	CILLY HEGGINM FINNTENINCE FILLTY REPORT TO:	7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	₽ }	Analysis	20160476 AZO	11/1/2	Containers	•
INVOICE TO:	E TO:	INVOIGE TO:	DAN JAHNE		Request				8
P.O. No.:);;		:					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 8
Sampler	Sampler's Signature:	00000	Date: 11/12/12	12/12				//0	(\$0D
Source Codes: MW-Monitorir	.*	rer T=Treatment		B=Sediment		State 1	1	200	
SW=Surfa X=Other	ce Water	ST=Stormwater W=Waste A=Air	C=Concrete			24.6	1	NI OSE	
Item	Transfer Check		Source Date	Time	S. S. M. A.C.	20.	Pay 16	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	1 2 3 4	латріс Литвег	Code Sampled	Sampled	るかかる	To Sues I	14 10c	3135 V	knts
ि		130517 1115-01	S Libert	X QQQ to	メスメ		_	- h	و
25		-02			× × ×		2 1	42527	٦
63		-03		0940 X	XXXX OH60	-	7 1 7	805PH	<u>ک</u> رد
オ	_	10-		X 0001	XXXX	7 1		42539	ğ,
95		-05		1020 X	1020 X X X X	1 2	- 1		CHC)
Ş		-66		110S X	XXXX Soli	1 2	1 7	H35H	H
4		±0−		1145 X	1145 X X X X X	-	2 1 1 2	Ha542	42
8		80 -		1200 X	1200 X X X X	7 1	2	(thach	司
bo		- 09		1305 X	305 X X X X X	1 2		42544	44
9		01-	→ →	1330 X	XXXX	1 2	-	1 43545	17
Transfer	Reline	Relinquished Br	Accepted By	Date	Time Charge I	Charge Exceptions: MCT Tax Exempt	P		
Number		9				Duplicates	es Blanks (Item Nos:	^ i	
-) 1			10/1	10:38] Reportin	g and Detection Limit Rec	RELIEFT W. S. Reporting and Detection Limit Requirements. X RCP Deliverables. 🗆 MCP GAM Cert.	es - LI MCP CAM Gen.	

GAP AMC, RES DEC

Additional Comments:

X146 Hartford Road, Manchester, CT 06040 □ 56 Quarry Road, Trumbull, CT 06611

☐ 1419 Richland Street, Columbia, SC 29201

□ 317 Iron Horse Way, Suite 204, Providence, RI 02908 □ 78 Interstate Drive, West Springfield, MA 01089

E 80 Washington Street, Suite 301, Paughkeepsie, NY

U Other

		2	1		2 ()
12.13	Duplicates Blanks (Item Nos.	Time	Date	Accepted By	Number Relinquished By
		101			Transfer
YSSYX	2	×	Sotil	-13 K	0
(h.geh		×	1400	-12 ×	12
42546	2	X	11/15/17 1350	,	1308171115
Plastic AS Partic AS Parti	RCRI Sil VON VI Sil VON VI Sil Constant Sil	Children To	Date Time Sampled Sampled	mber Source Code	No. 1 2 3 4 Sample Number
# 0 x 0 25 0 25 0 25 0 25 0 25 0 25 0 25	Server Se	4			N=Other TRID BLANK
Sig Difference of the Control of the	thanos of Diag		B=Sediment crete	T=Treatment Excility S=Soil W=Waste A=Air C=Concrete	MW=Monitoring Well PW=Potable Water 7 SW=Surface Water ST=Stormwater V
TRINGS CHOOL CON CONTRACTION	1	•	Date: 11/15/17	0 0 D	Sampler's Signature:
					P.O. No.:
2		Request	AN ANTIBOX 1		INVOICE TO:
Containers		Analysis	がます」と	CARP (FX) + J	REPORT TO: CAPPANIE INFOST
ANDOHA	20160476. AZO	7,07	というというと	ANCE FRICITY	OT DOTHIGGENERY MAINTON
LABORATORY	PROJECT NUMBER		OCAHON	Project Location	PROJECT NAME
days) *Surcharge Applies	□ 24-Hour* □ 72-Hour* □ 48-Hour* ★Standard ⊆	20400	ECURD	CHAIN-OF-COSTODY RECORD	CHAIN-OF-
Junaround	N. €	38/30	TOOD T		CUAIN OF

Transfer Number

11/15/7-110.38 Reporting and Detection Limit Requirements: TRCP Deliverables - MCP CAM Cert.

Additional Comments:

GAPMC, RES DEC

ډپ 13

Olomon O

Tuesday, November 28, 2017

Attn: Ms. Stephanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Sample ID#s: BZ43548 - BZ43564

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618
MA Lab Registration #M-CT007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63

VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/16/178:30Location Code:F&OReceived by:B11/16/1718:21

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

<u>aboratory Data</u> SDG ID: GBZ43548

Phoenix ID: BZ43548

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171116-14

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	50	ug/Kg	50	11/19/17	JLI	SW8260
1,1,1-Trichloroethane	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	50	ug/Kg	50	11/19/17	JLI	SW8260
1,1,2-Trichloroethane	ND	100	ug/Kg	50	11/19/17	JLI	SW8260
1,1-Dichloroethane	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
1,1-Dichloroethene	ND	140	ug/Kg	50	11/19/17	JLI	SW8260
1,1-Dichloropropene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
1,2,3-Trichlorobenzene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
1,2,3-Trichloropropane	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	50	ug/Kg	50	11/19/17	JLI	SW8260
1,2-Dibromoethane	ND	25	ug/Kg	50	11/19/17	JLI	SW8260
1,2-Dichlorobenzene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
1,2-Dichloroethane	ND	25	ug/Kg	50	11/19/17	JLI	SW8260
1,2-Dichloropropane	ND	100	ug/Kg	50	11/19/17	JLI	SW8260
I,3,5-Trimethylbenzene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
1,3-Dichlorobenzene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
1,3-Dichloropropane	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
1,4-Dichlorobenzene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
2,2-Dichloropropane	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
2-Chlorotoluene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
2-Hexanone	ND	700	ug/Kg	50	11/19/17	JLI	SW8260
2-Isopropyltoluene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
4-Chlorotoluene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
4-Methyl-2-pentanone	ND	1300	ug/Kg	50	11/19/17	JLI	SW8260

Client ID: 1305171116-14

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	5000	ug/Kg	50	11/19/17	JLI	SW8260
Acrylonitrile	ND	25	ug/Kg	50	11/19/17	JLI	SW8260
Benzene	ND	25	ug/Kg	50	11/19/17	JLI	SW8260
Bromobenzene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
Bromochloromethane	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
Bromodichloromethane	ND	50	ug/Kg	50	11/19/17	JLI	SW8260
Bromoform	ND	80	ug/Kg	50	11/19/17	JLI	SW8260
Bromomethane	ND	100	ug/Kg	50	11/19/17	JLI	SW8260
Carbon Disulfide	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
Carbon tetrachloride	ND	100	ug/Kg	50	11/19/17	JLI	SW8260
Chlorobenzene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
Chloroethane	ND	150	ug/Kg	50	11/19/17	JLI	SW8260
Chloroform	ND	120	ug/Kg	50	11/19/17	JLI	SW8260
Chloromethane	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
Dibromochloromethane	ND	50	ug/Kg	50	11/19/17	JLI	SW8260
Dibromomethane	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
Dichlorodifluoromethane	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
Ethylbenzene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
Hexachlorobutadiene	ND	200	ug/Kg	50	11/19/17	JLI	SW8260
Isopropylbenzene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
m&p-Xylene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
Methyl Ethyl Ketone	ND	3000	ug/Kg	50	11/19/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
Methylene chloride	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
Naphthalene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
n-Butylbenzene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
n-Propylbenzene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
o-Xylene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
p-Isopropyltoluene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
sec-Butylbenzene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
Styrene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
tert-Butylbenzene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
Tetrachloroethene	ND	100	ug/Kg	50	11/19/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	130	ug/Kg	50	11/19/17	JLI	SW8260
Toluene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
Total Xylenes	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	500	ug/Kg	50	11/19/17	JLI	SW8260
Trichloroethene	ND	100	ug/Kg	50	11/19/17	JLI	SW8260
Trichlorofluoromethane	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
Trichlorotrifluoroethane	ND	250	ug/Kg	50	11/19/17	JLI	SW8260
Vinyl chloride	ND	40	ug/Kg	50	11/19/17	JLI	SW8260
	ND	-10	ug/Ng	00	11/13/11	JLI	3110200
QA/QC Surrogates% 1,2-dichlorobenzene-d4	100		%	50	11/19/17	JLI	70 - 130 %
% I,z-dichiorobenzene-u4 % Bromofluorobenzene	95		% %	50	11/19/17	JLI	70 - 130 % 70 - 130 %
% Dibromofluoromethane	90		% %	50	11/19/17	JLI	70 - 130 % 70 - 130 %
/o Dibromonuoromethane	90		70	50	11/13/11	JLI	70 - 130 %

Client ID: 1305171116-14

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	98		%	50	11/19/17	JLI	70 - 130 %
Field Extraction	Completed				11/16/17		SW5035A

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

Results are reported on an "as received" basis, and are not corrected for dry weight.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

> Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

see "By" below

Sample Information Custody Information Date <u>Time</u> Collected by: Matrix: SOIL 11/16/17 8:35 Received by: F&O В **Location Code:** 11/16/17 18:21 Analyzed by:

Rush Request: Standard

P.O.#: 20160476.A20

_aboratory Data

SDG ID: GBZ43548

Phoenix ID: BZ43549

CT DOT HIGGANUM MAINTENANCE FACILITY Project ID:

Client ID: 1305171116-15

> RL/ DOI

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Volotiloo							
<u>Volatiles</u>							014/0000
1,1,1,2-Tetrachloroethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,1,1-Trichloroethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	3.0	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2-Trichloroethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloropropene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2,3-Trichlorobenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2,3-Trichloropropane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dibromoethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichlorobenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichloroethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichloropropane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,3-Dichlorobenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,3-Dichloropropane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,4-Dichlorobenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
2,2-Dichloropropane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
2-Chlorotoluene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
2-Hexanone	ND	25	ug/Kg	1	11/19/17	JLI	SW8260
2-Isopropyltoluene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
4-Chlorotoluene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
4-Methyl-2-pentanone	ND	25	ug/Kg	1	11/19/17	JLI	SW8260
1 Mounty 2 pointainone	110	20	~g/1.g	•	, ,	0_1	23200

Client ID: 1305171116-15

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	250	ug/Kg	1	11/19/17	JLI	SW8260
Acrylonitrile	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Benzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Bromobenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
romochloromethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
romodichloromethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
romoform	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
romomethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
arbon Disulfide	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
arbon tetrachloride	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
hlorobenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Chloroethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
hloroform	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
hloromethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
s-1,2-Dichloroethene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
is-1,3-Dichloropropene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
ibromochloromethane	ND	3.0	ug/Kg	1	11/19/17	JLI	SW8260
ibromomethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
richlorodifluoromethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
thylbenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
exachlorobutadiene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
sopropylbenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
n&p-Xylene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
lethyl Ethyl Ketone	ND	30	ug/Kg	1	11/19/17	JLI	SW8260
lethyl t-butyl ether (MTBE)	ND	10	ug/Kg	1	11/19/17	JLI	SW8260
lethylene chloride	ND	10	ug/Kg	1	11/19/17	JLI	SW8260
aphthalene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
-Butylbenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
-Propylbenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
-Xylene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
-Isopropyltoluene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
ec-Butylbenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
tyrene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
ert-Butylbenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
etrachloroethene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
etrahydrofuran (THF)	ND	10	ug/Kg	1	11/19/17	JLI	SW8260
oluene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
otal Xylenes	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
ans-1,2-Dichloroethene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
ans-1,3-Dichloropropene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
ans-1,4-dichloro-2-butene	ND	10	ug/Kg	1	11/19/17	JLI	SW8260
richloroethene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
richlorofluoromethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
richlorotrifluoroethane	ND	5.0	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
inyl chloride	ND	5.0	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
	שויו	5.0	ug/itg	,	11/13/17	JLI	3440200
QA/QC Surrogates	97		%	1	11/19/17	JLI	70 - 130 %
6 1,2-dichlorobenzene-d4 6 Bromofluorobenzene	93		%	1	11/19/17	JLI	70 - 130 % 70 - 130 %
	90		/0	ı	11/13/11	JLI	10 - 130 /0

Client ID: 1305171116-15

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	98		%	1	11/19/17	JLI	70 - 130 %
Field Extraction	Completed				11/16/17		SW5035A

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

> Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information Custody Information Date <u>Time</u> CONCRETE Collected by: Matrix: 11/16/17 9:00 Received by: F&O В 18:21 **Location Code:** 11/16/17 see "By" below

Rush Request: Analyzed by: Standard

20160476.A20 P.O.#:

Laboratory Data SDG ID: GBZ43548

Phoenix ID: BZ43550

CT DOT HIGGANUM MAINTENANCE FACILITY Project ID:

Client ID: 1305171116-16

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	96		%		11/16/17	Q	SW846-%Solid
Soil Extraction for PCB	Completed				11/17/17	AA/V	SW3545A
Polychlorinated Bipher	<u>ıyls</u>						
PCB-1016	ND	340	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1221	ND	340	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1232	ND	340	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1242	ND	340	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1248	ND	340	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1254	ND	340	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1260	ND	340	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1262	ND	340	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1268	ND	340	ug/Kg	10	11/21/17	AW	SW8082A
QA/QC Surrogates							
% DCBP	104		%	10	11/21/17	AW	30 - 150 %
% TCMX	104		%	10	11/21/17	AW	30 - 150 %

Client ID: 1305171116-16

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/16/179:25Location Code:F&OReceived by:B11/16/1718:21

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

<u>aboratory Data</u> SDG ID: GBZ43548
Phoenix ID: BZ43551

CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171116-17

Project ID:

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.37	0.37	mg/Kg	1	11/18/17	MA	SW6010C
Arsenic	9.19	0.73	mg/Kg	1	11/18/17	MA	SW6010C
Barium	367	0.37	mg/Kg	1	11/18/17	MA	SW6010C
Cadmium	1.98	0.37	mg/Kg	1	11/18/17	MA	SW6010C
Chromium	28.2	0.37	mg/Kg	1	11/18/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/20/17	RS	SW7471B
Lead	498	3.7	mg/Kg	10	11/20/17	MA	SW6010C
Selenium	< 1.5	1.5	mg/Kg	1	11/18/17	MA	SW6010C
Percent Solid	82		%		11/16/17	Q	SW846-%Solid
Soil Extraction for PCB	Completed				11/17/17	AA/V	SW3545A
Soil Extraction SVOA PAH	Completed				11/17/17	JJ/V	SW3545A
Extraction of CT ETPH	Completed				11/17/17	CC/V	SW3545A
Mercury Digestion	Completed				11/20/17	W/W	SW7471B
Total Metals Digest	Completed				11/17/17	B/AG	SW3050B
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	30000	3000	mg/Kg	50	11/21/17	JRB	CTETPH 8015D
Identification	**		mg/Kg	50	11/21/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	Diluted Out		%	50	11/21/17	JRB	50 - 150 %
Polychlorinated Bipher	nyl <u>s</u>						
PCB-1016	ND	400	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1221	ND	400	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1232	ND	400	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1242	ND	400	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1248	ND	400	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1254	ND	400	ug/Kg	10	11/21/17	AW	SW8082A

Client ID: 1305171116-17

Client ID: 1305171116-1	1	DI/					
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1260	ND	400	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1262	ND	400	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1268	ND	400	ug/Kg	10	11/21/17	AW	SW8082A
QA/QC Surrogates							
% DCBP	90		%	10	11/21/17	AW	30 - 150 %
% TCMX	81		%	10	11/21/17	AW	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
1,1,1-Trichloroethane	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	3.4	ug/Kg	1	11/22/17	JLI	SW8260
1,1,2-Trichloroethane	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
1,1-Dichloroethane	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
1,1-Dichloroethene	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
1,1-Dichloropropene	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
1,2,3-Trichlorobenzene	ND	440	ug/Kg	50	11/20/17	JLI	SW8260
1,2,3-Trichloropropane	ND	440	ug/Kg	50	11/20/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	440	ug/Kg	50	11/20/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	440	ug/Kg	50	11/20/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	11/22/17	JLI	SW8260
1,2-Dibromoethane	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
1,2-Dichlorobenzene	ND	440	ug/Kg	50	11/20/17	JLI	SW8260
1,2-Dichloroethane	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
1,2-Dichloropropane	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	440	ug/Kg	50	11/20/17	JLI	SW8260
1,3-Dichlorobenzene	ND	440	ug/Kg	50	11/20/17	JLI	SW8260
1,3-Dichloropropane	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
1,4-Dichlorobenzene	ND	440	ug/Kg	50	11/20/17	JLI	SW8260
2,2-Dichloropropane	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
2-Chlorotoluene	ND	440	ug/Kg	50	11/20/17	JLI	SW8260
2-Hexanone	ND	28	ug/Kg	1	11/22/17	JLI	SW8260
2-Isopropyltoluene	ND	440	ug/Kg	50	11/20/17	JLI	SW8260
4-Chlorotoluene	ND	440	ug/Kg	50	11/20/17	JLI	SW8260
4-Methyl-2-pentanone	ND	28	ug/Kg	1	11/22/17	JLI	SW8260
Acetone	ND	280	ug/Kg	1	11/22/17	JLI	SW8260
Acrylonitrile	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Benzene	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Bromobenzene	ND	440	ug/Kg	50	11/20/17	JLI	SW8260
Bromochloromethane	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Bromodichloromethane	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Bromoform	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Bromomethane	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Carbon Disulfide	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Carbon tetrachloride	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Chlorobenzene	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Chloroethane	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Chloroform	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Chloromethane	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260

Client ID: 1305171116-17

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Dibromochloromethane	ND	3.4	ug/Kg	1	11/22/17	JLI	SW8260
Dibromomethane	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Dichlorodifluoromethane	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Ethylbenzene	8.4	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Hexachlorobutadiene	ND	200	ug/Kg	50	11/20/17	JLI	SW8260
Isopropylbenzene	ND	440	ug/Kg	50	11/20/17	JLI	SW8260
m&p-Xylene	17	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Methyl Ethyl Ketone	ND	34	ug/Kg	1	11/22/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	11	ug/Kg	1	11/22/17	JLI	SW8260
Methylene chloride	ND	11	ug/Kg	1	11/22/17	JLI	SW8260
Naphthalene	180	180	ug/Kg	50	11/20/17	JLI	SW8260
n-Butylbenzene	ND	440	ug/Kg	50	11/20/17	JLI	SW8260
n-Propylbenzene	ND	440	ug/Kg	50	11/20/17	JLI	SW8260
o-Xylene	14	5.7	ug/Kg	1	11/22/17	JLI	SW8260
p-Isopropyltoluene	ND	440	ug/Kg	50	11/20/17	JLI	SW8260
sec-Butylbenzene	ND	440	ug/Kg	50	11/20/17	JLI	SW8260
Styrene	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
tert-Butylbenzene	ND	440	ug/Kg	50	11/20/17	JLI	SW8260
Tetrachloroethene	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	11	ug/Kg	1	11/22/17	JLI	SW8260
Toluene	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Total Xylenes	31.0	5.7	ug/Kg	1	11/22/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	880	ug/Kg	50	11/20/17	JLI	SW8260
Trichloroethene	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Trichlorofluoromethane	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Trichlorotrifluoroethane	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
Vinyl chloride	ND	5.7	ug/Kg	1	11/22/17	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	100		%	50	11/20/17	JLI	70 - 130 %
% Bromofluorobenzene	103		%	50	11/20/17	JLI	70 - 130 %
% Dibromofluoromethane	101		%	1	11/22/17	JLI	70 - 130 %
% Toluene-d8	88		%	1	11/22/17	JLI	70 - 130 %
Polynuclear Aromatic H							
2-Methylnaphthalene	ND	160	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthene	170	160	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthylene	ND	160	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Anthracene	220	160	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benz(a)anthracene	390	160	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(a)pyrene	380	160	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	330	160	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	370	160	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	420	160	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Chrysene	490	160	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	160	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluoranthene	830	160	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluorene	510	160	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	350	160	ug/Kg	10	11/17/17	DD	SW8270D (SIM)

Client ID: 1305171116-17

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Naphthalene	ND	160	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Phenanthrene	930	160	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Pyrene	1700	160	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	61		%	10	11/17/17	DD	30 - 130 %
% Nitrobenzene-d5	66		%	10	11/17/17	DD	30 - 130 %
% Terphenyl-d14	54		%	10	11/17/17	DD	30 - 130 %
Field Extraction	Completed				11/16/17		SW5035A

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C16 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Volatile Comment:

There was a suppression of the last internal standard in the low level analysis, all affected compounds are reported from the methanol preserved high level analysis which did not exhibit this interference.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

see "By" below

Sample InformationCustody InformationDateTimeMatrix:CONCRETECollected by:11/16/179:50Location Code:F&OReceived by:B11/16/1718:21

Rush Request: Standard Analyzed by:

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ43548

Phoenix ID: BZ43552

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171116-18

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	96		%		11/16/17	Q	SW846-%Solid
Soil Extraction for PCB	Completed				11/17/17	AA/V	SW3545A
Polychlorinated Biphe	enyls						
PCB-1016	ND	350	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1221	ND	350	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1232	ND	350	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1242	ND	350	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1248	ND	350	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1254	ND	350	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1260	ND	350	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1262	ND	350	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1268	ND	350	ug/Kg	10	11/22/17	AW	SW8082A
QA/QC Surrogates							
% DCBP	86		%	10	11/22/17	AW	30 - 150 %
% TCMX	83		%	10	11/22/17	AW	30 - 150 %

Client ID: 1305171116-18

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/16/1710:05Location Code:F&OReceived by:B11/16/1718:21

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ43548

Phoenix ID: BZ43553

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171116-19

2.70.1 0.1.01.01.1 (0.0 0.00)	Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Barium 30.1 0.32 mg/Kg 1 11/18/17 MA SW6010C Cadmium 0.56 0.32 mg/Kg 1 11/18/17 MA SW6010C Chromium 19.3 0.32 mg/Kg 1 11/18/17 MA SW6010C Mercury < 0.03	Silver	< 0.32	0.32	mg/Kg	1	11/18/17	MA	SW6010C
Cadmium 0.56 0.32 mg/kg 1 11/18/17 MA SW6010C Chromium 19.3 0.32 mg/kg 1 11/18/17 MA SW6010C Mercury < 0.03 0.03 mg/kg 1 11/18/17 MA SW6010C Mercury < 0.03 0.03 mg/kg 1 11/18/17 MA SW6010C Selenium < 1.3 1.3 mg/kg 1 11/18/17 MA SW6010C Selenium < 1.3 1.3 mg/kg 1 11/18/17 MA SW6010C Selenium < 1.3 1.3 mg/kg 1 11/18/17 MA SW6010C Percent Solid 94 % 11/16/17 MA SW6010C Selenium < 1.3 1.3 mg/kg 1 11/16/17 MA SW6010C Selenium < 2.1 0.3 1.3 11/17/17 MA SW6010C Substation 0.2 0.3	Arsenic	3.21	0.65	mg/Kg	1	11/18/17	MA	SW6010C
Chromium 19.3 0.32 mg/Kg 1 11/18/17 MA SW6010C Mercury < 0.03 0.03 mg/Kg 1 11/20/17 RS SW7471B Lead 0.95 0.32 mg/Kg 1 11/18/17 MA SW6010C Selenium < 1.3 1.3 mg/Kg 1 11/18/17 MA SW6010C Percent Solid 94 % 11/16/17 Q SW846-%Solid Soil Extraction for PCB Completed Soil Extraction SVOA PAH Completed Extraction of CT ETPH Completed Total Metals Digest Completed Total Metals Digest Completed Total Metals Digest Completed Thy GC (Extractable Products) Ext. Petroleum H.C. (C9-C36) ND 52 mg/Kg 1 11/19/17 JRB CTETPH 8015D QA/QC Surrogates % n-Pentacosane 78 % 1 11/19/17 JRB CTETPH 8015D QA/QC Surrogates % n-Pentacosane 78 % 1 11/19/17 JRB 50 - 150 % POBychlorinated Biphenyls PCB-1221 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1232 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1248 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1248 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1248 ND 350 ug/Kg 10 11/22/17 AW SW8082A	Barium	30.1	0.32	mg/Kg	1	11/18/17	MA	SW6010C
Mercury < 0.03 0.03 mg/kg 1 11/20/17 RS SW7471B Lead 0.95 0.32 mg/kg 1 11/18/17 MA SW6010C Selenium < 1.3	Cadmium	0.56	0.32	mg/Kg	1	11/18/17	MA	SW6010C
Lead	Chromium	19.3	0.32	mg/Kg	1	11/18/17	MA	SW6010C
Selenium	Mercury	< 0.03	0.03	mg/Kg	1	11/20/17	RS	SW7471B
Percent Solid 94 % 11/16/17 Q SW846-%Solid Soil Extraction for PCB Completed 11/17/17 AAV SW3545A Soil Extraction SVOA PAH Completed 11/17/17 JJV SW3545A Extraction of CT ETPH Completed 11/17/17 JC/V SW3545A Mercury Digestion Completed 11/17/17 JC/V SW3545A Mercury Digestion Completed 11/17/17 B/AG SW3050B Mercury Digestion ND 52 mg/Kg 1 11/19/17 JRB CTETPH 8015D Mercury Digestion ND mg/Kg 1 11/19/17 JRB CTETPH 8015D Mercury Digestion ND mg/Kg 1 11/19/17 JRB CTETPH 8015D Mercury Digestion ND Mercury Digestion ND Mercury Digestion 11/19/17 JRB 50 - 150 % Mercury Digestion Completed ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1232 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1248 ND 350 ug/Kg 10 11/22/17 AW SW8082A	Lead	0.95	0.32	mg/Kg	1	11/18/17	MA	SW6010C
Soil Extraction for PCB	Selenium	< 1.3	1.3	mg/Kg	1	11/18/17	MA	SW6010C
Soil Extraction SVOA PAH Completed 11/17/17 JJ/V SW3545A	Percent Solid	94		%		11/16/17	Q	SW846-%Solid
Extraction of CT ETPH Completed 11/17/17 JC/V SW3545A Mercury Digestion Completed 11/20/17 W/W SW7471B Total Metals Digest Completed 11/17/17 B/AG SW3050B TPH by GC (Extractable Products) Ext. Petroleum H.C. (C9-C36) ND 52 mg/Kg 1 11/19/17 JRB CTETPH 8015D mg/KG 1 11/19/17 JRB 50 - 150 % Polychlorinated Biphenyls PCB-1016 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1221 ND 350 ug/KG 10 11/22/17 AW SW8082A PCB-1232 ND 350 ug/KG 10 11/22/17 AW SW8082A PCB-1242 ND 350 ug/KG 10 11/22/17 AW SW8082A PCB-1242 ND 350 ug/KG 10 11/22/17 AW SW8082A PCB-1248 ND 350 ug/KG 10 11/22/17 AW SW8082A PCB-1248	Soil Extraction for PCB	Completed				11/17/17	AA/V	SW3545A
Mercury Digestion	Soil Extraction SVOA PAH	Completed				11/17/17	JJ/V	SW3545A
Total Metals Digest Completed 11/17/17 B/AG SW3050B TPH by GC (Extractable Products) Ext. Petroleum H.C. (C9-C36) ND 52 mg/Kg 1 11/19/17 JRB CTETPH 8015D dentification ND mg/Kg 1 11/19/17 JRB CTETPH 8015D QA/QC Surrogates % n-Pentacosane 78 % 1 11/19/17 JRB 50 - 150 % Polychlorinated Biphenyls PCB-1016 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1221 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1232 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1242 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1242 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1242 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1248 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1248	Extraction of CT ETPH	Completed				11/17/17	JC/V	SW3545A
TPH by GC (Extractable Products) Ext. Petroleum H.C. (C9-C36) ND 52 mg/Kg 1 11/19/17 JRB CTETPH 8015D dentification ND mg/Kg 1 11/19/17 JRB CTETPH 8015D Mg/Kg 1 11/19/17 JRB CTETPH 8015D Mg/Kg 1 11/19/17 JRB 50 - 150 % QA/QC Surrogates % n-Pentacosane 78 % 1 11/19/17 JRB 50 - 150 % POB-1016 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1221 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1232 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1232 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1242 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1242 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1248 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1248 ND 350 ug/Kg 10 11/22/17 AW SW8082A	Mercury Digestion	Completed				11/20/17	W/W	SW7471B
Ext. Petroleum H.C. (C9-C36) ND 52 mg/Kg 1 11/19/17 JRB CTETPH 8015D mg/Kg 1 11/19/17 JRB 50 - 150 % Polychlorinated Biphenyls PCB-1016 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1221 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1232 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1242 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1242 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1242 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1248 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1248	Total Metals Digest	Completed				11/17/17	B/AG	SW3050B
Identification ND mg/Kg 1 11/19/17 JRB CTETPH 8015D Mg/Kg 1 11/19/17 JRB CTETPH 8015D Mg/Kg 1 11/19/17 JRB 50 - 150 % Mg/Kg 1 11/19/17 JRB 50 - 150 % Mg/Kg 1 11/19/17 JRB 50 - 150 % Mg/Kg 10 11/22/17 AW SW8082A	TPH by GC (Extractable	e Products	<u>s)</u>					
QA/QC Surrogates % n-Pentacosane 78 % 1 11/19/17 JRB 50 - 150 % POB-1016 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1221 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1232 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1242 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1248 ND 350 ug/Kg 10 11/22/17 AW SW8082A	Ext. Petroleum H.C. (C9-C36)	ND	52	mg/Kg	1	11/19/17	JRB	CTETPH 8015D
Polychlorinated Biphenyls ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1221 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1232 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1232 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1242 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1248 ND 350 ug/Kg 10 11/22/17 AW SW8082A	dentification	ND		mg/Kg	1	11/19/17	JRB	CTETPH 8015D
Polychlorinated Biphenyls PCB-1016 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1221 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1232 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1242 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1248 ND 350 ug/Kg 10 11/22/17 AW SW8082A	QA/QC Surrogates							
PCB-1016 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1221 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1232 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1242 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1248 ND 350 ug/Kg 10 11/22/17 AW SW8082A	% n-Pentacosane	78		%	1	11/19/17	JRB	50 - 150 %
PCB-1221 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1232 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1242 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1248 ND 350 ug/Kg 10 11/22/17 AW SW8082A	Polychlorinated Bipher	<u>nyls</u>						
PCB-1232 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1242 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1248 ND 350 ug/Kg 10 11/22/17 AW SW8082A	PCB-1016	ND	350	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1242 ND 350 ug/Kg 10 11/22/17 AW SW8082A PCB-1248 ND 350 ug/Kg 10 11/22/17 AW SW8082A	PCB-1221	ND	350	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1248 ND 350 ug/Kg 10 11/22/17 AW SW8082A	PCB-1232	ND	350	ug/Kg	10	11/22/17	AW	SW8082A
0 0	PCB-1242	ND	350	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1254 ND 350 ug/Kg 10 11/22/17 AW SW8082A	PCB-1248	ND	350	ug/Kg	10	11/22/17	AW	SW8082A
	PCB-1254	ND	350	ug/Kg	10	11/22/17	AW	SW8082A

Client ID: 1305171116-19

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1260	ND	350	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1262	ND	350	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1268	ND	350	ug/Kg	10	11/22/17	AW	SW8082A
QA/QC Surrogates							
% DCBP	90		%	10	11/22/17	AW	30 - 150 %
% TCMX	77		%	10	11/22/17	AW	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,1,1-Trichloroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	2.9	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2-Trichloroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloropropene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2,3-Trichlorobenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2,3-Trichloropropane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dibromoethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichlorobenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichloroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichloropropane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,3-Dichlorobenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,3-Dichloropropane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,4-Dichlorobenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
2,2-Dichloropropane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
2-Chlorotoluene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
2-Hexanone	ND	24	ug/Kg	1	11/19/17	JLI	SW8260
2-Isopropyltoluene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
4-Chlorotoluene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
4-Methyl-2-pentanone	ND	24	ug/Kg	' 1	11/19/17	JLI	SW8260
Acetone	ND	240	ug/Kg	1	11/19/17	JLI	SW8260
Acrylonitrile	ND	4.8	ug/Kg	' 1	11/19/17	JLI	SW8260
Benzene	ND	4.8	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
Bromobenzene	ND	4.8	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
Bromochloromethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Bromodichloromethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Bromoform	ND	4.8	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
	ND	4.8	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
Bromomethane	ND	4.8		1	11/19/17	JLI	SW8260
Carbon Disulfide Carbon tetrachloride	ND	4.6 4.8	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
	ND	4.6 4.8		1	11/19/17	JLI	SW8260
Chlorobenzene			ug/Kg				
Chloroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Chloroform	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Chloromethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260

Client ID: 1305171116-19

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Dibromochloromethane	ND	2.9	ug/Kg	1	11/19/17	JLI	SW8260
Dibromomethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Dichlorodifluoromethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Ethylbenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Hexachlorobutadiene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Isopropylbenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
m&p-Xylene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Methyl Ethyl Ketone	ND	29	ug/Kg	1	11/19/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	9.7	ug/Kg	1	11/19/17	JLI	SW8260
Methylene chloride	ND	9.7	ug/Kg	1	11/19/17	JLI	SW8260
Naphthalene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
n-Butylbenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
n-Propylbenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
o-Xylene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
p-Isopropyltoluene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
sec-Butylbenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Styrene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
tert-Butylbenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Tetrachloroethene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	9.7	ug/Kg	1	11/19/17	JLI	SW8260
Toluene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Total Xylenes	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	9.7	ug/Kg	1	11/19/17	JLI	SW8260
Trichloroethene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Trichlorofluoromethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Trichlorotrifluoroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Vinyl chloride	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	102		%	1	11/19/17	JLI	70 - 130 %
% Bromofluorobenzene	96		%	1	11/19/17	JLI	70 - 130 %
% Dibromofluoromethane	95		%	1	11/19/17	JLI	70 - 130 %
% Toluene-d8	99		%	1	11/19/17	JLI	70 - 130 %
Polynuclear Aromatic H	<u>IC</u>						
2-Methylnaphthalene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthylene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Anthracene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Chrysene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluoranthene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluorene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)

Client ID: 1305171116-19

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Naphthalene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Phenanthrene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Pyrene	ND	140	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	59		%	10	11/17/17	DD	30 - 130 %
% Nitrobenzene-d5	59		%	10	11/17/17	DD	30 - 130 %
% Terphenyl-d14	64		%	10	11/17/17	DD	30 - 130 %
Field Extraction	Completed				11/16/17		SW5035A

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

 Sample Information
 Custody Information
 Date
 Time

 Matrix:
 SOIL
 Collected by:
 11/16/17
 11:00

 Location Code:
 F&O
 Received by:
 B
 11/16/17
 18:21

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ43548

Phoenix ID: BZ43554

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171116-20

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.41	0.41	mg/Kg	1	11/18/17	MA	SW6010C
Arsenic	0.94	0.81	mg/Kg	1	11/18/17	MA	SW6010C
Barium	23.9	0.41	mg/Kg	1	11/18/17	MA	SW6010C
Cadmium	< 0.41	0.41	mg/Kg	1	11/18/17	MA	SW6010C
Chromium	8.63	0.41	mg/Kg	1	11/18/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/20/17	RS	SW7471B
₋ead	3.27	0.41	mg/Kg	1	11/18/17	MA	SW6010C
Selenium	< 1.6	1.6	mg/Kg	1	11/18/17	MA	SW6010C
Percent Solid	88		%		11/16/17	Q	SW846-%Solid
Soil Extraction for PCB	Completed				11/17/17	AA/V	SW3545A
Soil Extraction SVOA PAH	Completed				11/17/17	JJ/V	SW3545A
Extraction of CT ETPH	Completed				11/17/17	JC/V	SW3545A
Mercury Digestion	Completed				11/20/17	W/W	SW7471B
Total Metals Digest	Completed				11/17/17	B/AG	SW3050B
ΓΡΗ by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	56	mg/Kg	1	11/19/17	JRB	CTETPH 8015D
dentification	ND		mg/Kg	1	11/19/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	67		%	1	11/19/17	JRB	50 - 150 %
Polychlorinated Bipher	<u>nyls</u>						
PCB-1016	ND	380	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1221	ND	380	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1232	ND	380	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1242	ND	380	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1248	ND	380	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1254	ND	380	ug/Kg	10	11/22/17	AW	SW8082A

Client ID: 1305171116-20

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1260	ND	380	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1262	ND	380	ug/Kg	10	11/22/17	AW	SW8082A
PCB-1268	ND	380	ug/Kg	10	11/22/17	AW	SW8082A
QA/QC Surrogates							
% DCBP	113		%	10	11/22/17	AW	30 - 150 %
% TCMX	87		%	10	11/22/17	AW	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
1,1,1-Trichloroethane	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	2.6	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2-Trichloroethane	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethane	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethene	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloropropene	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
1,2,3-Trichlorobenzene	ND	390	ug/Kg	50	11/20/17	JLI	SW8260
1,2,3-Trichloropropane	ND	390	ug/Kg	50	11/20/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	390	ug/Kg	50	11/20/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	390	ug/Kg	50	11/20/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dibromoethane	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichlorobenzene	ND	390	ug/Kg	50	11/20/17	JLI	SW8260
1,2-Dichloroethane	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichloropropane	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	390	ug/Kg	50	11/20/17	JLI	SW8260
1,3-Dichlorobenzene	ND	390	ug/Kg	50	11/20/17	JLI	SW8260
1,3-Dichloropropane	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
1,4-Dichlorobenzene	ND	390	ug/Kg	50	11/20/17	JLI	SW8260
2,2-Dichloropropane	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
2-Chlorotoluene	ND	390	ug/Kg	50	11/20/17	JLI	SW8260
2-Hexanone	ND	22	ug/Kg	1	11/19/17	JLI	SW8260
2-Isopropyltoluene	ND	390	ug/Kg	50	11/20/17	JLI	SW8260
4-Chlorotoluene	ND	390	ug/Kg	50	11/20/17	JLI	SW8260
4-Methyl-2-pentanone	ND	22	ug/Kg	1	11/19/17	JLI	SW8260
Acetone	ND	220	ug/Kg	1	11/19/17	JLI	SW8260
Acrylonitrile	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Benzene	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Bromobenzene	ND	390	ug/Kg	50	11/20/17	JLI	SW8260
Bromochloromethane	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Bromodichloromethane	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Bromoform	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Bromomethane	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Carbon Disulfide	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Carbon tetrachloride	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Chlorobenzene	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Chloroethane	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Chloroform	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Chloromethane	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260

Client ID: 1305171116-20

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Dibromochloromethane	ND	2.6	ug/Kg	1	11/19/17	JLI	SW8260
Dibromomethane	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Dichlorodifluoromethane	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Ethylbenzene	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Hexachlorobutadiene	ND	200	ug/Kg	50	11/20/17	JLI	SW8260
Isopropylbenzene	ND	390	ug/Kg	50	11/20/17	JLI	SW8260
m&p-Xylene	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Methyl Ethyl Ketone	ND	26	ug/Kg	1	11/19/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	8.6	ug/Kg	1	11/19/17	JLI	SW8260
Methylene chloride	ND	8.6	ug/Kg	1	11/19/17	JLI	SW8260
Naphthalene	ND	390	ug/Kg	50	11/20/17	JLI	SW8260
n-Butylbenzene	ND	390	ug/Kg	50	11/20/17	JLI	SW8260
n-Propylbenzene	ND	390	ug/Kg	50	11/20/17	JLI	SW8260
o-Xylene	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
p-Isopropyltoluene	ND	390	ug/Kg	50	11/20/17	JLI	SW8260
sec-Butylbenzene	ND	390	ug/Kg	50	11/20/17	JLI	SW8260
Styrene	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
tert-Butylbenzene	ND	390	ug/Kg	50	11/20/17	JLI	SW8260
Tetrachloroethene	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	8.6	ug/Kg	1	11/19/17	JLI	SW8260
Toluene	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Total Xylenes	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	770	ug/Kg	50	11/20/17	JLI	SW8260
Trichloroethene	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Trichlorofluoromethane	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Trichlorotrifluoroethane	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
Vinyl chloride	ND	4.3	ug/Kg	1	11/19/17	JLI	SW8260
QA/QC Surrogates			5 5				
% 1,2-dichlorobenzene-d4	100		%	50	11/20/17	JLI	70 - 130 %
% Bromofluorobenzene	94		%	50	11/20/17	JLI	70 - 130 %
% Dibromofluoromethane	102		%	1	11/19/17	JLI	70 - 130 %
% Toluene-d8	98		%	1	11/19/17	JLI	70 - 130 %
Polynuclear Aromatic F	IC						
2-Methylnaphthalene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Acenaphthylene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Anthracene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Chrysene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluoranthene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Fluorene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)

Client ID: 1305171116-20

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Naphthalene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Phenanthrene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
Pyrene	ND	150	ug/Kg	10	11/17/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	65		%	10	11/17/17	DD	30 - 130 %
% Nitrobenzene-d5	61		%	10	11/17/17	DD	30 - 130 %
% Terphenyl-d14	73		%	10	11/17/17	DD	30 - 130 %
Field Extraction	Completed				11/16/17		SW5035A

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

There was a suppression of the last internal standard in the low level analysis, all affected compounds are reported from the methanol preserved high level analysis which did not exhibit this interference.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/16/1711:10Location Code:F&OReceived by:B11/16/1718:21

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

<u>Laboratory Data</u> SDG ID: GBZ43548

Phoenix ID: BZ43555

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171116-21

Davamatar	Decult	RL/	l laita	Dilution	Data/Time	D.	Deference
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.36	0.36	mg/Kg	1	11/18/17	MA	SW6010C
Arsenic	10.2	0.72	mg/Kg	1	11/18/17	MA	SW6010C
Barium	52.4	0.36	mg/Kg	1	11/18/17	MA	SW6010C
Cadmium	4.67	0.36	mg/Kg	1	11/18/17	MA	SW6010C
Chromium	14.8	0.36	mg/Kg	1	11/18/17	MA	SW6010C
Mercury	0.05	0.03	mg/Kg	1	11/20/17	RS	SW7471B
Lead	129	0.36	mg/Kg	1	11/18/17	MA	SW6010C
Selenium	< 1.4	1.4	mg/Kg	1	11/18/17	MA	SW6010C
Percent Solid	91		%		11/16/17	Q	SW846-%Solid
Soil Extraction for PCB	Completed				11/17/17	AA/V	SW3545A
Soil Extraction SVOA PAH	Completed				11/17/17	JJ/V	SW3545A
Extraction of CT ETPH	Completed				11/17/17	JC/V	SW3545A
Mercury Digestion	Completed				11/20/17	W/W	SW7471B
Total Metals Digest	Completed				11/17/17	B/AG	SW3050B
TPH by GC (Extractabl	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	54	mg/Kg	1	11/19/17	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	11/19/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	88		%	1	11/19/17	JRB	50 - 150 %
Polychlorinated Biphe	<u>nyls</u>						
PCB-1016	ND	360	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1221	ND	360	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1232	ND	360	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1242	ND	360	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1248	ND	360	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1254	ND	360	ug/Kg	10	11/20/17	AW	SW8082A

Client ID: 1305171116-21

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1260	ND	360	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1262	ND	360	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1268	ND	360	ug/Kg	10	11/20/17	AW	SW8082A
QA/QC Surrogates							
% DCBP	94		%	10	11/20/17	AW	30 - 150 %
% TCMX	83		%	10	11/20/17	AW	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
1,1,1-Trichloroethane	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	4.0	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2-Trichloroethane	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethane	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloropropene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
1,2,3-Trichlorobenzene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
1,2,3-Trichloropropane	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dibromoethane	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichlorobenzene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichloroethane	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichloropropane	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
1,3-Dichlorobenzene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
1,3-Dichloropropane	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
1,4-Dichlorobenzene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
2,2-Dichloropropane	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
2-Chlorotoluene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
2-Hexanone	ND	33	ug/Kg	1	11/19/17	JLI	SW8260
2-Isopropyltoluene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
4-Chlorotoluene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
4-Methyl-2-pentanone	ND	33	ug/Kg	1	11/19/17	JLI	SW8260
Acetone	ND	330	ug/Kg	1	11/19/17	JLI	SW8260
Acrylonitrile	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Benzene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Bromobenzene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Bromochloromethane	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Bromodichloromethane	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Bromoform	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Bromomethane	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Carbon Disulfide	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Carbon tetrachloride	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Chlorobenzene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Chloroethane	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Chloroform	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Chloromethane	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260

Client ID: 1305171116-21

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Dibromochloromethane	ND	4.0	ug/Kg	1	11/19/17	JLI	SW8260
Dibromomethane	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Dichlorodifluoromethane	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Ethylbenzene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Hexachlorobutadiene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Isopropylbenzene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
m&p-Xylene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Methyl Ethyl Ketone	ND	40	ug/Kg	1	11/19/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	13	ug/Kg	1	11/19/17	JLI	SW8260
Methylene chloride	ND	13	ug/Kg	1	11/19/17	JLI	SW8260
Naphthalene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
n-Butylbenzene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
n-Propylbenzene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
o-Xylene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
p-Isopropyltoluene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
sec-Butylbenzene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Styrene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
tert-Butylbenzene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Tetrachloroethene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	13	ug/Kg	1	11/19/17	JLI	SW8260
Toluene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Total Xylenes	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	13	ug/Kg	1	11/19/17	JLI	SW8260
Trichloroethene	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Trichlorofluoromethane	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Trichlorotrifluoroethane	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
Vinyl chloride	ND	6.6	ug/Kg	1	11/19/17	JLI	SW8260
QA/QC Surrogates			3 3			-	
% 1,2-dichlorobenzene-d4	108		%	1	11/19/17	JLI	70 - 130 %
% Bromofluorobenzene	86		%	1	11/19/17	JLI	70 - 130 %
% Dibromofluoromethane	102		%	1	11/19/17	JLI	70 - 130 %
% Toluene-d8	97		%	1	11/19/17	JLI	70 - 130 %
Polynuclear Aromatic I	HC						
2-Methylnaphthalene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Acenaphthene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Acenaphthylene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Anthracene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benz(a)anthracene	170	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	150	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	160	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Chrysene	230	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	150	ug/Kg ug/Kg	10	11/18/17	DD	SW8270D (SIM)
	320	150	ug/Kg ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Fluoranthene							
Fluorene Indeno(1,2,3-cd)pyrene	ND ND	150 150	ug/Kg ug/Kg	10 10	11/18/17 11/18/17	DD DD	SW8270D (SIM) SW8270D (SIM)
mueno(1,2,3-cu)pyrene	טאו	130	ug/Ng	10	11/10/17	טט	SYVOZI OD (SIIVI)

Client ID: 1305171116-21

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Naphthalene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Phenanthrene	150	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Pyrene	330	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	59		%	10	11/18/17	DD	30 - 130 %
% Nitrobenzene-d5	55		%	10	11/18/17	DD	30 - 130 %
% Terphenyl-d14	65		%	10	11/18/17	DD	30 - 130 %
Field Extraction	Completed				11/16/17		SW5035A

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:CONCRETECollected by:11/16/1712:30Location Code:F&OReceived by:B11/16/1718:21

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ43548

Phoenix ID: BZ43556

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171116-22

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	95		%		11/16/17	Q	SW846-%Solid
Soil Extraction for PCB	Completed				11/17/17	AA/V	SW3545A
Polychlorinated Biph	<u>enyls</u>						
PCB-1016	ND	340	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1221	ND	340	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1232	ND	340	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1242	ND	340	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1248	ND	340	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1254	ND	340	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1260	ND	340	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1262	ND	340	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1268	ND	340	ug/Kg	10	11/20/17	AW	SW8082A
QA/QC Surrogates							
% DCBP	90		%	10	11/20/17	AW	30 - 150 %
% TCMX	84		%	10	11/20/17	AW	30 - 150 %

Client ID: 1305171116-22

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/16/1712:35Location Code:F&OReceived by:B11/16/1718:21

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

<u>Laboratory Data</u> SDG ID: GBZ43548

Phoenix ID: BZ43557

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
		•					
Silver	< 0.41	0.41	mg/Kg	1	11/18/17	MA	SW6010C
Arsenic	< 0.82	0.82	mg/Kg	1	11/18/17	MA	SW6010C
Barium	15.4	0.41	mg/Kg	1	11/18/17	MA	SW6010C
Cadmium	< 0.41	0.41	mg/Kg	1	11/18/17	MA	SW6010C
Chromium	7.75	0.41	mg/Kg	1	11/18/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/20/17	RS	SW7471B
Lead	0.82	0.41	mg/Kg	1	11/18/17	MA	SW6010C
Selenium	< 1.6	1.6	mg/Kg	1	11/18/17	MA	SW6010C
Percent Solid	85		%		11/16/17	Q	SW846-%Solid
Soil Extraction for PCB	Completed				11/17/17	AA/V	SW3545A
Soil Extraction SVOA PAH	Completed				11/17/17	JJ/V	SW3545A
Extraction of CT ETPH	Completed				11/17/17	JC/V	SW3545A
Mercury Digestion	Completed				11/20/17	W/W	SW7471B
Total Metals Digest	Completed				11/17/17	B/AG	SW3050B
TPH by GC (Extractable	e Products	3)					
Ext. Petroleum H.C. (C9-C36)	ND	58	mg/Kg	1	11/19/17	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	11/19/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	63		%	1	11/19/17	JRB	50 - 150 %
Polychlorinated Bipher	nyl <u>s</u>						
PCB-1016	ND	380	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1221	ND	380	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1232	ND	380	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1242	ND	380	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1248	ND	380	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1254	ND	380	ug/Kg	10	11/20/17	AW	SW8082A

Client ID: 1305171116-23

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1260	ND	380	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1262	ND	380	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1268	ND	380	ug/Kg	10	11/20/17	AW	SW8082A
QA/QC Surrogates							
% DCBP	75		%	10	11/20/17	AW	30 - 150 %
% TCMX	74		%	10	11/20/17	AW	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,1,1-Trichloroethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	3.0	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2-Trichloroethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloropropene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2,3-Trichlorobenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2,3-Trichloropropane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dibromoethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichlorobenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichloroethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichloropropane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,3-Dichlorobenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,3-Dichloropropane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,4-Dichlorobenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
2,2-Dichloropropane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
2-Chlorotoluene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
2-Hexanone	ND	25	ug/Kg	1	11/19/17	JLI	SW8260
2-Isopropyltoluene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
4-Chlorotoluene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
4-Methyl-2-pentanone	ND	25	ug/Kg	1	11/19/17	JLI	SW8260
Acetone	ND	250	ug/Kg	1	11/19/17	JLI	SW8260
Acrylonitrile	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Benzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Bromobenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Bromochloromethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Bromodichloromethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Bromoform	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Bromomethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Carbon Disulfide	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Carbon tetrachloride	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Chlorobenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Chloroethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Chloroform	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Chloromethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260

Client ID: 1305171116-23

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Dibromochloromethane	ND	3.0	ug/Kg	1	11/19/17	JLI	SW8260
Dibromomethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Dichlorodifluoromethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Ethylbenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Hexachlorobutadiene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Isopropylbenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
m&p-Xylene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Methyl Ethyl Ketone	ND	30	ug/Kg	1	11/19/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	1	11/19/17	JLI	SW8260
Methylene chloride	ND	10	ug/Kg	1	11/19/17	JLI	SW8260
Naphthalene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
n-Butylbenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
n-Propylbenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
o-Xylene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
p-Isopropyltoluene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
sec-Butylbenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Styrene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
tert-Butylbenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Tetrachloroethene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	10	ug/Kg	1	11/19/17	JLI	SW8260
Toluene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Total Xylenes	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	10	ug/Kg	1	11/19/17	JLI	SW8260
Trichloroethene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Trichlorofluoromethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Trichlorotrifluoroethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Vinyl chloride	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
QA/QC Surrogates		0.0	~g/g	•	,,	V	0.1.0200
% 1,2-dichlorobenzene-d4	98		%	1	11/19/17	JLI	70 - 130 %
% Bromofluorobenzene	96		%	1	11/19/17	JLI	70 - 130 %
% Dibromofluoromethane	99		%	1	11/19/17	JLI	70 - 130 %
% Toluene-d8	98		%	1	11/19/17	JLI	70 - 130 %
Polynuclear Aromatic HC			,~	·	, . 6,	V <u> </u>	10 100 /0
	ND	150	ua/Ka	10	11/18/17	DD	SW8270D (SIM)
2-Methylnaphthalene			ug/Kg			DD	, ,
Acenaphthene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Acetage	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Anthracene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Chrysene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Fluoranthene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Fluorene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)

Client ID: 1305171116-23

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Naphthalene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Phenanthrene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Pyrene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	60		%	10	11/18/17	DD	30 - 130 %
% Nitrobenzene-d5	62		%	10	11/18/17	DD	30 - 130 %
% Terphenyl-d14	62		%	10	11/18/17	DD	30 - 130 %
Field Extraction	Completed				11/16/17		SW5035A

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:CONCRETECollected by:11/16/1713:00Location Code:F&OReceived by:B11/16/1718:21

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ43548

Phoenix ID: BZ43558

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Client ID: 1305171116-24

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	96		%		11/16/17	Q	SW846-%Solid
Soil Extraction for PCB	Completed				11/17/17	AA/V	SW3545A
Polychlorinated Biph	<u>enyls</u>						
PCB-1016	ND	340	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1221	ND	340	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1232	ND	340	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1242	ND	340	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1248	ND	340	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1254	ND	340	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1260	ND	340	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1262	ND	340	ug/Kg	10	11/20/17	AW	SW8082A
PCB-1268	ND	340	ug/Kg	10	11/20/17	AW	SW8082A
QA/QC Surrogates							
% DCBP	98		%	10	11/20/17	AW	30 - 150 %
% TCMX	95		%	10	11/20/17	AW	30 - 150 %

Client ID: 1305171116-24

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/16/1713:10Location Code:F&OReceived by:B11/16/1718:21

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ43548

Phoenix ID: BZ43559

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.32	0.32	mg/Kg	1	11/18/17	MA	SW6010C
Arsenic	1.24	0.65	mg/Kg	1	11/18/17	MA	SW6010C
Barium	39.6	0.32	mg/Kg	1	11/18/17	MA	SW6010C
Cadmium	0.67	0.32	mg/Kg	1	11/18/17	MA	SW6010C
Chromium	18.5	0.32	mg/Kg	1	11/18/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/20/17	RS	SW7471B
Lead	4.77	0.32	mg/Kg	1	11/18/17	MA	SW6010C
Selenium	< 1.3	1.3	mg/Kg	1	11/18/17	MA	SW6010C
Percent Solid	91		%		11/16/17	Q	SW846-%Solid
Soil Extraction for PCB	Completed				11/20/17	AA/V	SW3545A
Soil Extraction SVOA PAH	Completed				11/17/17	JJ/V	SW3545A
Extraction of CT ETPH	Completed				11/17/17	CC/V	SW3545A
Mercury Digestion	Completed				11/20/17	W/W	SW7471B
Total Metals Digest	Completed				11/17/17	B/AG	SW3050B
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	54	mg/Kg	1	11/19/17	IDD	CTETPH 8015D
	ND	٠.	mg/Kg	I	11/19/17	JRB	0.2
Identification	ND	01	mg/Kg	1	11/19/17	JRB	CTETPH 8015D
Identification QA/QC Surrogates		0.				-	
		Ŭ.				-	
QA/QC Surrogates	ND 84		mg/Kg	1	11/19/17	JRB	CTETPH 8015D
QA/QC Surrogates % n-Pentacosane	ND 84	360	mg/Kg	1	11/19/17	JRB	CTETPH 8015D
QA/QC Surrogates % n-Pentacosane Polychlorinated Bipher	ND 84 nyls		mg/Kg %	1	11/19/17	JRB JRB	CTETPH 8015D 50 - 150 %
QA/QC Surrogates % n-Pentacosane Polychlorinated Bipher PCB-1016	ND 84 nyls ND	360	mg/Kg % ug/Kg	1 1 10	11/19/17 11/19/17 11/21/17	JRB JRB	CTETPH 8015D 50 - 150 % SW8082A
QA/QC Surrogates % n-Pentacosane Polychlorinated Bipher PCB-1016 PCB-1221	ND 84 nyls ND ND	360 360	mg/Kg % ug/Kg ug/Kg	1 1 10 10	11/19/17 11/19/17 11/21/17 11/21/17	JRB JRB AW AW	CTETPH 8015D 50 - 150 % SW8082A SW8082A
QA/QC Surrogates % n-Pentacosane Polychlorinated Bipher PCB-1016 PCB-1221 PCB-1232	ND 84 nyls ND ND ND	360 360 360	mg/Kg % ug/Kg ug/Kg ug/Kg	1 1 10 10 10	11/19/17 11/19/17 11/21/17 11/21/17 11/21/17	JRB JRB AW AW AW	CTETPH 8015D 50 - 150 % SW8082A SW8082A SW8082A

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY Phoenix I.D.: BZ43559

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1260	ND	360	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1262	ND	360	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1268	ND	360	ug/Kg	10	11/21/17	AW	SW8082A
QA/QC Surrogates							
% DCBP	90		%	10	11/21/17	AW	30 - 150 %
% TCMX	68		%	10	11/21/17	AW	30 - 150 %
Volatiles							
1,1,1,2-Tetrachloroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,1,1-Trichloroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	2.9	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2-Trichloroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloropropene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2,3-Trichlorobenzene	ND	320	ug/Kg	50	11/20/17	JLI	SW8260
1,2,3-Trichloropropane	ND	320	ug/Kg	50	11/20/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	320	ug/Kg	50	11/20/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	320	ug/Kg	50	11/20/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dibromoethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichlorobenzene	ND	320	ug/Kg	50	11/20/17	JLI	SW8260
1,2-Dichloroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichloropropane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	320	ug/Kg	50	11/20/17	JLI	SW8260
1,3-Dichlorobenzene	ND	320	ug/Kg	50	11/20/17	JLI	SW8260
1,3-Dichloropropane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
1,4-Dichlorobenzene	ND	320	ug/Kg	50	11/20/17	JLI	SW8260
2,2-Dichloropropane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
2-Chlorotoluene	ND	320	ug/Kg	50	11/20/17	JLI	SW8260
2-Hexanone	ND	24	ug/Kg	1	11/19/17	JLI	SW8260
2-Isopropyltoluene	ND	320	ug/Kg	50	11/20/17	JLI	SW8260
4-Chlorotoluene	ND	320	ug/Kg	50	11/20/17	JLI	SW8260
4-Methyl-2-pentanone	ND	24	ug/Kg	1	11/19/17	JLI	SW8260
Acetone	ND	240	ug/Kg	1	11/19/17	JLI	SW8260
Acrylonitrile	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Benzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Bromobenzene	ND	320	ug/Kg	50	11/20/17	JLI	SW8260
Bromochloromethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Bromodichloromethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Bromoform	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Bromomethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Carbon Disulfide	ND	4.8	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
Carbon tetrachloride	ND	4.8	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
Chlorobenzene	ND	4.8 4.8	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
	ND	4.8 4.8	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
Chloroethane	ND	4.8 4.8	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
Chloroform	ND ND	4.8 4.8		1	11/19/17	JLI	SW8260 SW8260
Chloromethane			ug/Kg	1			
cis-1,2-Dichloroethene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260

Client ID: 1305171116-25

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Dibromochloromethane	ND	2.9	ug/Kg	1	11/19/17	JLI	SW8260
Dibromomethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Dichlorodifluoromethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Ethylbenzene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Hexachlorobutadiene	ND	200	ug/Kg	50	11/20/17	JLI	SW8260
Isopropylbenzene	ND	320	ug/Kg	50	11/20/17	JLI	SW8260
m&p-Xylene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Methyl Ethyl Ketone	ND	29	ug/Kg	1	11/19/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	9.7	ug/Kg	1	11/19/17	JLI	SW8260
Methylene chloride	ND	9.7	ug/Kg	1	11/19/17	JLI	SW8260
Naphthalene	ND	320	ug/Kg	50	11/20/17	JLI	SW8260
n-Butylbenzene	ND	320	ug/Kg	50	11/20/17	JLI	SW8260
n-Propylbenzene	ND	320	ug/Kg	50	11/20/17	JLI	SW8260
o-Xylene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
p-Isopropyltoluene	ND	320	ug/Kg	50	11/20/17	JLI	SW8260
sec-Butylbenzene	ND	320	ug/Kg	50	11/20/17	JLI	SW8260
Styrene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
tert-Butylbenzene	ND	320	ug/Kg	50	11/20/17	JLI	SW8260
Tetrachloroethene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	9.7	ug/Kg	1	11/19/17	JLI	SW8260
Toluene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Total Xylenes	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	650	ug/Kg	50	11/20/17	JLI	SW8260
Trichloroethene	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Trichlorofluoromethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Trichlorotrifluoroethane	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
Vinyl chloride	ND	4.8	ug/Kg	1	11/19/17	JLI	SW8260
QA/QC Surrogates			-9.19	-			
% 1,2-dichlorobenzene-d4	102		%	50	11/20/17	JLI	70 - 130 %
% Bromofluorobenzene	94		%	50	11/20/17	JLI	70 - 130 %
% Dibromofluoromethane	111		%	1	11/19/17	JLI	70 - 130 %
% Toluene-d8	97		%	1	11/19/17	JLI	70 - 130 %
Polynuclear Aromatic HO							
2-Methylnaphthalene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Acenaphthene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Acenaphthylene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Anthracene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benz(a)anthracene	150	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(a)pyrene	150	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	160	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	170	140			11/18/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene		140	ug/Kg	10 10	11/18/17		SW8270D (SIM)
Chrysene	250 ND		ug/Kg			DD	
Dibenz(a,h)anthracene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Fluoranthene	410 ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Fluorene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)

Client ID: 1305171116-25

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Naphthalene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Phenanthrene	320	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Pyrene	420	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	56		%	10	11/18/17	DD	30 - 130 %
% Nitrobenzene-d5	54		%	10	11/18/17	DD	30 - 130 %
% Terphenyl-d14	58		%	10	11/18/17	DD	30 - 130 %
Field Extraction	Completed				11/16/17		SW5035A

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

There was a suppression of the last internal standard in the low level analysis, all affected compounds are reported from the methanol preserved high level analysis which did not exhibit this interference.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/16/1713:20Location Code:F&OReceived by:B11/16/1718:21

Rush Request: Standard Analyzed by:

P.O.#: 20160476.A20

Laboratory Data

see "By" below

SDG ID: GBZ43548 Phoenix ID: BZ43560

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.33	0.33	mg/Kg	1	11/18/17	MA	SW6010C
Arsenic	< 0.65	0.65	mg/Kg	1	11/18/17	MA	SW6010C
Barium	27.1	0.33	mg/Kg	1	11/18/17	MA	SW6010C
Cadmium	< 0.33	0.33	mg/Kg	1	11/18/17	MA	SW6010C
Chromium	9.58	0.33	mg/Kg	1	11/18/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/20/17	RS	SW7471B
_ead	< 0.33	0.33	mg/Kg	1	11/18/17	MA	SW6010C
Selenium	< 1.3	1.3	mg/Kg	1	11/18/17	MA	SW6010C
Percent Solid	92		%		11/16/17	Q	SW846-%Solid
Soil Extraction for PCB	Completed				11/20/17	AA/V	SW3545A
Soil Extraction SVOA PAH	Completed				11/17/17	AA/V	SW3545A
Extraction of CT ETPH	Completed				11/17/17	CC/V	SW3545A
Mercury Digestion	Completed				11/20/17	W/W	SW7471B
Total Metals Digest	Completed				11/17/17	B/AG	SW3050B
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	54	mg/Kg	1	11/19/17	JRB	CTETPH 8015D
dentification	ND		mg/Kg	1	11/19/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	70		%	1	11/19/17	JRB	50 - 150 %
Polychlorinated Bipher	<u>nyls</u>						
PCB-1016	ND	360	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1221	ND	360	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1232	ND	360	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1242	ND	360	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1248	ND	360	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1254	ND	360	ug/Kg	10	11/21/17	AW	SW8082A

Client ID: 1305171116-26

Client ID: 1305171116-2	0	5					
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1260	ND	360	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1262	ND	360	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1268	ND	360	ug/Kg	10	11/21/17	AW	SW8082A
QA/QC Surrogates							
% DCBP	95		%	10	11/21/17	AW	30 - 150 %
% TCMX	76		%	10	11/21/17	AW	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
1,1,1-Trichloroethane	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	3.7	ug/Kg	1	11/20/17	JLI	SW8260
1,1,2-Trichloroethane	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
1,1-Dichloroethane	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
1,1-Dichloroethene	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
1,1-Dichloropropene	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
1,2,3-Trichlorobenzene	ND	340	ug/Kg	50	11/20/17	JLI	SW8260
1,2,3-Trichloropropane	ND	340	ug/Kg	50	11/20/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	340	ug/Kg	50	11/20/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	340	ug/Kg	50	11/20/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	11/20/17	JLI	SW8260
1,2-Dibromoethane	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
1,2-Dichlorobenzene	ND	340	ug/Kg	50	11/20/17	JLI	SW8260
1,2-Dichloroethane	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
1,2-Dichloropropane	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	340	ug/Kg	50	11/20/17	JLI	SW8260
1,3-Dichlorobenzene	ND	340	ug/Kg	50	11/20/17	JLI	SW8260
1,3-Dichloropropane	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
1,4-Dichlorobenzene	ND	340	ug/Kg	50	11/20/17	JLI	SW8260
2,2-Dichloropropane	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
2-Chlorotoluene	ND	340	ug/Kg	50	11/20/17	JLI	SW8260
2-Hexanone	ND	31	ug/Kg	1	11/20/17	JLI	SW8260
2-Isopropyltoluene	ND	340	ug/Kg	50	11/20/17	JLI	SW8260
4-Chlorotoluene	ND	340	ug/Kg	50	11/20/17	JLI	SW8260
4-Methyl-2-pentanone	ND	31	ug/Kg	1	11/20/17	JLI	SW8260
Acetone	ND	310	ug/Kg	1	11/20/17	JLI	SW8260
Acrylonitrile	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Benzene	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Bromobenzene	ND	340	ug/Kg	50	11/20/17	JLI	SW8260
Bromochloromethane	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Bromodichloromethane	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Bromoform	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Bromomethane	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Carbon Disulfide	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Carbon tetrachloride	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Chlorobenzene	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Chloroethane	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Chloroform	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Chloromethane	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260

Client ID: 1305171116-26

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Dibromochloromethane	ND	3.7	ug/Kg	1	11/20/17	JLI	SW8260
Dibromomethane	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Dichlorodifluoromethane	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Ethylbenzene	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Hexachlorobutadiene	ND	200	ug/Kg	50	11/20/17	JLI	SW8260
Isopropylbenzene	ND	340	ug/Kg	50	11/20/17	JLI	SW8260
m&p-Xylene	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Methyl Ethyl Ketone	ND	37	ug/Kg	1	11/20/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	12	ug/Kg	1	11/20/17	JLI	SW8260
Methylene chloride	ND	12	ug/Kg	1	11/20/17	JLI	SW8260
Naphthalene	ND	340	ug/Kg	50	11/20/17	JLI	SW8260
n-Butylbenzene	ND	340	ug/Kg	50	11/20/17	JLI	SW8260
n-Propylbenzene	ND	340	ug/Kg	50	11/20/17	JLI	SW8260
o-Xylene	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
p-Isopropyltoluene	ND	340	ug/Kg	50	11/20/17	JLI	SW8260
sec-Butylbenzene	ND	340	ug/Kg	50	11/20/17	JLI	SW8260
Styrene	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
tert-Butylbenzene	ND	340	ug/Kg	50	11/20/17	JLI	SW8260
Tetrachloroethene	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	12	ug/Kg	1	11/20/17	JLI	SW8260
Toluene	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Total Xylenes	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	670	ug/Kg	50	11/20/17	JLI	SW8260
Trichloroethene	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Trichlorofluoromethane	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Trichlorotrifluoroethane	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
Vinyl chloride	ND	6.2	ug/Kg	1	11/20/17	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	98		%	50	11/20/17	JLI	70 - 130 %
% Bromofluorobenzene	95		%	50	11/20/17	JLI	70 - 130 %
% Dibromofluoromethane	107		%	1	11/20/17	JLI	70 - 130 %
% Toluene-d8	95		%	1	11/20/17	JLI	70 - 130 %
Polynuclear Aromatic H	<u> 1C</u>						
2-Methylnaphthalene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Acenaphthene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Acenaphthylene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Anthracene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Chrysene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Fluoranthene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Fluorene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)

Client ID: 1305171116-26

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Naphthalene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Phenanthrene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Pyrene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	47		%	10	11/18/17	DD	30 - 130 %
% Nitrobenzene-d5	52		%	10	11/18/17	DD	30 - 130 %
% Terphenyl-d14	55		%	10	11/18/17	DD	30 - 130 %
Field Extraction	Completed				11/16/17		SW5035A

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Volatile Comment:

There was a suppression of the last internal standard in the low level analysis, all affected compounds are reported from the methanol preserved high level analysis which did not exhibit this interference.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

 Sample Information
 Custody Information
 Date
 Time

 Matrix:
 SOIL
 Collected by:
 11/16/17
 14:00

 Location Code:
 F&O
 Received by:
 B
 11/16/17
 18:21

Rush Request: Standard Analyzed by: see "By" below

RI/

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ43548

Phoenix ID: BZ43561

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.39	0.39	mg/Kg	1	11/18/17	MA	SW6010C
Arsenic	0.80	0.79	mg/Kg	1	11/18/17	MA	SW6010C
Barium	22.2	0.39	mg/Kg	1	11/18/17	MA	SW6010C
Cadmium	< 0.39	0.39	mg/Kg	1	11/18/17	MA	SW6010C
Chromium	9.86	0.39	mg/Kg	1	11/18/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/20/17	RS	SW7471B
Lead	2.05	0.39	mg/Kg	1	11/18/17	MA	SW6010C
Selenium	< 1.6	1.6	mg/Kg	1	11/18/17	MA	SW6010C
Percent Solid	87		%		11/16/17	Q	SW846-%Solid
Soil Extraction SVOA PAH	Completed				11/17/17	AA/V	SW3545A
Extraction of CT ETPH	Completed				11/17/17	CC/V	SW3545A
Mercury Digestion	Completed				11/20/17	W/W	SW7471B
Total Metals Digest	Completed				11/17/17	B/AG	SW3050B
TDIII 00/E / / II	D 1 4						
Ext. Petroleum H.C. (C9-C36) Identification	Products ND ND	5) 56	mg/Kg mg/Kg	1 1	11/19/17 11/19/17	JRB JRB	
Ext. Petroleum H.C. (C9-C36) Identification QA/QC Surrogates	ND	_	0 0			-	CTETPH 8015D CTETPH 8015D 50 - 150 %
Ext. Petroleum H.C. (C9-C36) Identification QA/QC Surrogates % n-Pentacosane	ND ND	_	mg/Kg	1	11/19/17	JRB	CTETPH 8015D
Ext. Petroleum H.C. (C9-C36) Identification QA/QC Surrogates % n-Pentacosane Volatiles	ND ND	_	mg/Kg	1	11/19/17	JRB	CTETPH 8015D
Ext. Petroleum H.C. (C9-C36) Identification QA/QC Surrogates % n-Pentacosane Volatiles 1,1,1,2-Tetrachloroethane	ND ND 66	56	mg/Kg	1	11/19/17	JRB JRB	CTETPH 8015D 50 - 150 %
Ext. Petroleum H.C. (C9-C36) Identification QA/QC Surrogates % n-Pentacosane Volatiles 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	ND ND 66 ND	56 56	mg/Kg % ug/Kg	1 1	11/19/17 11/19/17 11/19/17	JRB JRB JLI	CTETPH 8015D 50 - 150 % SW8260
Ext. Petroleum H.C. (C9-C36) Identification QA/QC Surrogates % n-Pentacosane Volatiles 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane	ND ND 66 ND ND	5.3 5.3	mg/Kg % ug/Kg ug/Kg	1 1 1 1	11/19/17 11/19/17 11/19/17 11/19/17	JRB JRB JLI JLI	CTETPH 8015D 50 - 150 % SW8260 SW8260
Ext. Petroleum H.C. (C9-C36) Identification QA/QC Surrogates % n-Pentacosane Volatiles 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	ND ND 66 ND ND ND	5.3 5.3 3.2	mg/Kg % ug/Kg ug/Kg ug/Kg	1 1 1 1 1	11/19/17 11/19/17 11/19/17 11/19/17	JRB JRB JLI JLI JLI	CTETPH 8015D 50 - 150 % SW8260 SW8260 SW8260
TPH by GC (Extractable Ext. Petroleum H.C. (C9-C36) Identification QA/QC Surrogates % n-Pentacosane Volatiles 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,0-Ichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	ND ND 66 ND ND ND ND	5.3 5.3 3.2 5.3	mg/Kg % ug/Kg ug/Kg ug/Kg ug/Kg	1 1 1 1 1	11/19/17 11/19/17 11/19/17 11/19/17 11/19/17	JRB JRB JLI JLI JLI JLI	CTETPH 8015D 50 - 150 % SW8260 SW8260 SW8260 SW8260

Client ID: 1305171116-27

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,2,3-Trichlorobenzene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
1,2,3-Trichloropropane	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dibromoethane	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichlorobenzene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichloroethane	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichloropropane	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
1,3-Dichlorobenzene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
1,3-Dichloropropane	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
1,4-Dichlorobenzene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
2,2-Dichloropropane	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
2-Chlorotoluene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
2-Hexanone	ND	26	ug/Kg	1	11/19/17	JLI	SW8260
2-Isopropyltoluene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
4-Chlorotoluene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
4-Methyl-2-pentanone	ND	26	ug/Kg	1	11/19/17	JLI	SW8260
Acetone	ND	260	ug/Kg	1	11/19/17	JLI	SW8260
Acrylonitrile	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Benzene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Bromobenzene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Bromochloromethane	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Bromodichloromethane	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Bromoform	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Bromomethane	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Carbon Disulfide	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Carbon tetrachloride	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Chlorobenzene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Chloroethane	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Chloroform	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Chloromethane	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Dibromochloromethane	ND	3.2	ug/Kg	1	11/19/17	JLI	SW8260
Dibromomethane	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Dichlorodifluoromethane	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Ethylbenzene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Hexachlorobutadiene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Isopropylbenzene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
m&p-Xylene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Methyl Ethyl Ketone	ND	32	ug/Kg	1	11/19/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	11	ug/Kg	1	11/19/17	JLI	SW8260
Methylene chloride	ND	11	ug/Kg	1	11/19/17	JLI	SW8260
Naphthalene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
n-Butylbenzene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
n-Propylbenzene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
o-Xylene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
о-лушине	IND	5.5	ug/Ng	1	11/13/11	JLI	G V V U Z U U

Client ID: 1305171116-27

Client ID. 130317 1110-21		DL/					
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
p-Isopropyltoluene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
sec-Butylbenzene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Styrene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
tert-Butylbenzene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Tetrachloroethene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	11	ug/Kg	1	11/19/17	JLI	SW8260
Toluene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Total Xylenes	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	11	ug/Kg	1	11/19/17	JLI	SW8260
Trichloroethene	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Trichlorofluoromethane	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Trichlorotrifluoroethane	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
Vinyl chloride	ND	5.3	ug/Kg	1	11/19/17	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	105		%	1	11/19/17	JLI	70 - 130 %
% Bromofluorobenzene	87		%	1	11/19/17	JLI	70 - 130 %
% Dibromofluoromethane	101		%	1	11/19/17	JLI	70 - 130 %
% Toluene-d8	99		%	1	11/19/17	JLI	70 - 130 %
Polynuclear Aromatic Ho	<u>C</u>						
2-Methylnaphthalene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Acenaphthene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Acenaphthylene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Anthracene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Chrysene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Fluoranthene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Fluorene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Naphthalene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Phenanthrene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Pyrene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	56		%	10	11/18/17	DD	30 - 130 %
% Nitrobenzene-d5	62		%	10	11/18/17	DD	30 - 130 %
% Terphenyl-d14	69		%	10	11/18/17	DD	30 - 130 %
Field Extraction	Completed				11/16/17		SW5035A

Client ID: 1305171116-27

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

 Sample Information
 Custody Information
 Date
 Time

 Matrix:
 SOIL
 Collected by:
 11/16/17
 14:30

 Location Code:
 F&O
 Received by:
 B
 11/16/17
 18:21

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

<u>aboratory Data</u> SDG ID: GBZ43548

Phoenix ID: BZ43562

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Davamatar	Decult	RL/	Lloita	Dilution	Data/Time	D.	Deference
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.33	0.33	mg/Kg	1	11/18/17	MA	SW6010C
Arsenic	< 0.66	0.66	mg/Kg	1	11/18/17	MA	SW6010C
Barium	17.8	0.33	mg/Kg	1	11/18/17	MA	SW6010C
Cadmium	0.50	0.33	mg/Kg	1	11/18/17	MA	SW6010C
Chromium	11.9	0.33	mg/Kg	1	11/18/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/20/17	RS	SW7471B
Lead	3.32	0.33	mg/Kg	1	11/18/17	MA	SW6010C
Selenium	< 1.3	1.3	mg/Kg	1	11/18/17	MA	SW6010C
Percent Solid	97		%		11/16/17	Q	SW846-%Solid
Soil Extraction for PCB	Completed				11/20/17	AA/V	SW3545A
Soil Extraction SVOA PAH	Completed				11/17/17	AA/V	SW3545A
Extraction of CT ETPH	Completed				11/17/17	CC/V	SW3545A
Mercury Digestion	Completed				11/20/17	W/W	SW7471B
Total Metals Digest	Completed				11/17/17	B/AG	SW3050B
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	9500	500	mg/Kg	10	11/20/17	JRB	CTETPH 8015D
Identification	**		mg/Kg	10	11/20/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	Diluted Out		%	10	11/20/17	JRB	50 - 150 %
Polychlorinated Biphe	<u>nyls</u>						
PCB-1016	ND	340	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1221	ND	340	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1232	ND	340	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1242	ND	340	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1248	ND	340	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1254	ND	340	ug/Kg	10	11/21/17	AW	SW8082A

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY Phoenix I.D.: BZ43562

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1260	ND	340	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1262	ND	340	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1268	ND	340	ug/Kg	10	11/21/17	AW	SW8082A
QA/QC Surrogates							
% DCBP	93		%	10	11/21/17	AW	30 - 150 %
% TCMX	83		%	10	11/21/17	AW	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
1,1,1-Trichloroethane	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	2.8	ug/Kg	1	11/20/17	JLI	SW8260
1,1,2-Trichloroethane	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
1,1-Dichloroethane	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
1,1-Dichloroethene	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
1,1-Dichloropropene	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
1,2,3-Trichlorobenzene	ND	280	ug/Kg	50	11/19/17	JLI	SW8260
1,2,3-Trichloropropane	ND	280	ug/Kg	50	11/19/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	280	ug/Kg	50	11/19/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	280	ug/Kg	50	11/19/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
1,2-Dibromoethane	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
1,2-Dichlorobenzene	ND	280	ug/Kg	50	11/19/17	JLI	SW8260
1,2-Dichloroethane	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
1,2-Dichloropropane	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	280	ug/Kg	50	11/19/17	JLI	SW8260
1,3-Dichlorobenzene	ND	280	ug/Kg	50	11/19/17	JLI	SW8260
1,3-Dichloropropane	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
1,4-Dichlorobenzene	ND	280	ug/Kg	50	11/19/17	JLI	SW8260
2,2-Dichloropropane	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
2-Chlorotoluene	ND	280	ug/Kg	50	11/19/17	JLI	SW8260
2-Hexanone	ND	23	ug/Kg	1	11/20/17	JLI	SW8260
2-Isopropyltoluene	ND	280	ug/Kg	50	11/19/17	JLI	SW8260
4-Chlorotoluene	ND	280	ug/Kg	50	11/19/17	JLI	SW8260
4-Methyl-2-pentanone	ND	23	ug/Kg	1	11/20/17	JLI	SW8260
Acetone	ND	230	ug/Kg	1	11/20/17	JLI	SW8260
Acrylonitrile	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Benzene	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Bromobenzene	ND	280	ug/Kg	50	11/19/17	JLI	SW8260
Bromochloromethane	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Bromodichloromethane	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Bromoform	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Bromomethane	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Carbon Disulfide	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Carbon tetrachloride	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Chlorobenzene	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Chloroethane	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Chloroform	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Chloromethane	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260

Client ID: 1305171116-28

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Dibromochloromethane	ND	2.8	ug/Kg	1	11/20/17	JLI	SW8260
Dibromomethane	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Dichlorodifluoromethane	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Ethylbenzene	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Hexachlorobutadiene	ND	200	ug/Kg	50	11/19/17	JLI	SW8260
Isopropylbenzene	ND	280	ug/Kg	50	11/19/17	JLI	SW8260
m&p-Xylene	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Methyl Ethyl Ketone	ND	28	ug/Kg	1	11/20/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	9.4	ug/Kg	1	11/20/17	JLI	SW8260
Methylene chloride	ND	9.4	ug/Kg	1	11/20/17	JLI	SW8260
Naphthalene	ND	280	ug/Kg	50	11/19/17	JLI	SW8260
n-Butylbenzene	ND	280	ug/Kg	50	11/19/17	JLI	SW8260
n-Propylbenzene	ND	280	ug/Kg	50	11/19/17	JLI	SW8260
o-Xylene	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
p-Isopropyltoluene	ND	280	ug/Kg	50	11/19/17	JLI	SW8260
sec-Butylbenzene	ND	280	ug/Kg	50	11/19/17	JLI	SW8260
Styrene	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
tert-Butylbenzene	ND	280	ug/Kg	50	11/19/17	JLI	SW8260
Tetrachloroethene	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	9.4	ug/Kg	1	11/20/17	JLI	SW8260
Toluene	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Total Xylenes	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	550	ug/Kg	50	11/19/17	JLI	SW8260
Trichloroethene	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Trichlorofluoromethane	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Trichlorotrifluoroethane	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
Vinyl chloride	ND	4.7	ug/Kg	1	11/20/17	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	99		%	50	11/19/17	JLI	70 - 130 %
% Bromofluorobenzene	104		%	50	11/19/17	JLI	70 - 130 %
% Dibromofluoromethane	103		%	1	11/20/17	JLI	70 - 130 %
% Toluene-d8	80		%	1	11/20/17	JLI	70 - 130 %
Polynuclear Aromatic H	<u>IC</u>						
2-Methylnaphthalene	ND	130	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Acenaphthene	ND	130	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Acenaphthylene	ND	130	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Anthracene	ND	130	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	130	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	130	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	130	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	130	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	130	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Chrysene	ND	130	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	130	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Fluoranthene	ND	130	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Fluorene	ND	130	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	130	ug/Kg	10	11/18/17	DD	SW8270D (SIM)

Client ID: 1305171116-28

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Naphthalene	ND	130	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Phenanthrene	ND	130	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Pyrene	ND	130	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	63		%	10	11/18/17	DD	30 - 130 %
% Nitrobenzene-d5	65		%	10	11/18/17	DD	30 - 130 %
% Terphenyl-d14	69		%	10	11/18/17	DD	30 - 130 %
Field Extraction	Completed				11/16/17		SW5035A

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

There was a suppression of the last internal standard in the low level analysis, all affected compounds are reported from the methanol preserved high level analysis which did not exhibit this interference.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C16 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/16/1714:55Location Code:F&OReceived by:B11/16/1718:21

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

<u>Laboratory Data</u> SDG ID: GBZ43548

Phoenix ID: BZ43563

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.33	0.33	mg/Kg	1	11/18/17	MA	SW6010C
Arsenic	< 0.65	0.65	mg/Kg	1	11/18/17	MA	SW6010C
Barium	21.1	0.33	mg/Kg	1	11/18/17	MA	SW6010C
Cadmium	< 0.33	0.33	mg/Kg	1	11/18/17	MA	SW6010C
Chromium	10.4	0.33	mg/Kg	1	11/18/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/20/17	RS	SW7471B
Lead	0.78	0.33	mg/Kg	1	11/18/17	MA	SW6010C
Selenium	< 1.3	1.3	mg/Kg	1	11/18/17	MA	SW6010C
Percent Solid	91		%		11/16/17	Q	SW846-%Solid
Soil Extraction for PCB	Completed				11/20/17	AA/V	SW3545A
Soil Extraction SVOA PAH	Completed				11/17/17	JJ/V	SW3545A
Extraction of CT ETPH	Completed				11/17/17	CC/V	SW3545A
Mercury Digestion	Completed				11/20/17	W/W	SW7471B
Total Metals Digest	Completed				11/17/17	B/AG	SW3050B
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	1800	110	mg/Kg	2	11/20/17	JRB	CTETPH 8015D
Identification	**		mg/Kg	2	11/20/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	69		%	2	11/20/17	JRB	50 - 150 %
Polychlorinated Bipher	<u>nyls</u>						
PCB-1016	ND	360	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1221	ND	360	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1232	ND	360	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1242	ND	360	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1248	ND	360	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1254	ND	360	ug/Kg	10	11/21/17	AW	SW8082A

Client ID: 1305171116-29

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1260	ND	360	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1262	ND	360	ug/Kg	10	11/21/17	AW	SW8082A
PCB-1268	ND	360	ug/Kg	10	11/21/17	AW	SW8082A
QA/QC Surrogates							
% DCBP	71		%	10	11/21/17	AW	30 - 150 %
% TCMX	69		%	10	11/21/17	AW	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,1,1-Trichloroethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	3.0	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2-Trichloroethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloropropene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2,3-Trichlorobenzene	ND	210	ug/Kg	50	11/19/17	JLI	SW8260
1,2,3-Trichloropropane	ND	210	ug/Kg	50	11/19/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	210	ug/Kg	50	11/19/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	210	ug/Kg	50	11/19/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dibromoethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichlorobenzene	ND	210	ug/Kg	50	11/19/17	JLI	SW8260
1,2-Dichloroethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichloropropane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	210	ug/Kg	50	11/19/17	JLI	SW8260
1,3-Dichlorobenzene	ND	210	ug/Kg	50	11/19/17	JLI	SW8260
1,3-Dichloropropane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,4-Dichlorobenzene	ND	210	ug/Kg	50	11/19/17	JLI	SW8260
2,2-Dichloropropane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
2-Chlorotoluene	ND	210	ug/Kg	50	11/19/17	JLI	SW8260
2-Hexanone	ND	25	ug/Kg	1	11/19/17	JLI	SW8260
2-Isopropyltoluene	ND	210	ug/Kg	50	11/19/17	JLI	SW8260
4-Chlorotoluene	ND	210	ug/Kg	50	11/19/17	JLI	SW8260
4-Methyl-2-pentanone	ND	25	ug/Kg	1	11/19/17	JLI	SW8260
Acetone	ND	250	ug/Kg	1	11/19/17	JLI	SW8260
Acrylonitrile	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Benzene	ND	5.0	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
Bromobenzene	ND	210	ug/Kg ug/Kg	50	11/19/17	JLI	SW8260
Bromochloromethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Bromodichloromethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Bromoform	ND	5.0	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
Bromomethane	ND	5.0	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
	ND	5.0	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
Carbon Disulfide Carbon tetrachloride	ND	5.0	ug/Kg ug/Kg	1	11/19/17	JLI	SW8260
	ND ND	5.0 5.0		1	11/19/17	JLI	SW8260 SW8260
Chlorobenzene	ND ND	5.0 5.0	ug/Kg ug/Kg		11/19/17	JLI	SW8260 SW8260
Chloroethane				1			
Chloroform	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Chloromethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260

Client ID: 1305171116-29

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Dibromochloromethane	ND	3.0	ug/Kg	1	11/19/17	JLI	SW8260
Dibromomethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Dichlorodifluoromethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Ethylbenzene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Hexachlorobutadiene	ND	200	ug/Kg	50	11/19/17	JLI	SW8260
Isopropylbenzene	ND	210	ug/Kg	50	11/19/17	JLI	SW8260
m&p-Xylene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Methyl Ethyl Ketone	ND	30	ug/Kg	1	11/19/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	1	11/19/17	JLI	SW8260
Methylene chloride	ND	10	ug/Kg	1	11/19/17	JLI	SW8260
Naphthalene	ND	210	ug/Kg	50	11/19/17	JLI	SW8260
n-Butylbenzene	ND	210	ug/Kg	50	11/19/17	JLI	SW8260
n-Propylbenzene	ND	210	ug/Kg	50	11/19/17	JLI	SW8260
o-Xylene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
p-Isopropyltoluene	ND	210	ug/Kg	50	11/19/17	JLI	SW8260
sec-Butylbenzene	ND	210	ug/Kg	50	11/19/17	JLI	SW8260
Styrene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
tert-Butylbenzene	ND	210	ug/Kg	50	11/19/17	JLI	SW8260
Tetrachloroethene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	10	ug/Kg	1	11/19/17	JLI	SW8260
Toluene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Total Xylenes	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	420	ug/Kg	50	11/19/17	JLI	SW8260
Trichloroethene	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Trichlorofluoromethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Trichlorotrifluoroethane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
Vinyl chloride	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	102		%	50	11/19/17	JLI	70 - 130 %
% Bromofluorobenzene	93		%	50	11/19/17	JLI	70 - 130 %
% Dibromofluoromethane	105		%	1	11/19/17	JLI	70 - 130 %
% Toluene-d8	90		%	1	11/19/17	JLI	70 - 130 %
Polynuclear Aromatic H	<u>C</u>						
2-Methylnaphthalene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Acenaphthene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Acenaphthylene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Anthracene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Chrysene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Fluoranthene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Fluorene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)

Client ID: 1305171116-29

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Naphthalene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Phenanthrene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Pyrene	ND	150	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	58		%	10	11/18/17	DD	30 - 130 %
% Nitrobenzene-d5	70		%	10	11/18/17	DD	30 - 130 %
% Terphenyl-d14	65		%	10	11/18/17	DD	30 - 130 %
Field Extraction	Completed				11/16/17		SW5035A

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

There was a suppression of the last internal standard in the low level analysis, all affected compounds are reported from the methanol preserved high level analysis which did not exhibit this interference.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C14 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 28, 2017

FOR: Attn: Ms. Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:11/16/1715:25Location Code:F&OReceived by:B11/16/1718:21

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ43548

Phoenix ID: BZ43564

Project ID: CT DOT HIGGANUM MAINTENANCE FACILITY

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.35	0.35	mg/Kg	1	11/18/17	MA	SW6010C
Arsenic	1.01	0.70	mg/Kg	1	11/18/17	MA	SW6010C
Barium	32.8	0.35	mg/Kg	1	11/18/17	MA	SW6010C
Cadmium	0.43	0.35	mg/Kg	1	11/18/17	MA	SW6010C
Chromium	10.3	0.35	mg/Kg	1	11/18/17	MA	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	11/20/17	RS	SW7471B
Lead	7.22	0.35	mg/Kg	1	11/18/17	MA	SW6010C
Selenium	< 1.4	1.4	mg/Kg	1	11/18/17	MA	SW6010C
Percent Solid	93		%		11/16/17	Q	SW846-%Solid
Soil Extraction SVOA PAH	Completed				11/17/17	JJ/V	SW3545A
Extraction of CT ETPH	Completed				11/17/17	CC/V	SW3545A
Mercury Digestion	Completed				11/20/17	W/W	SW7471B
Total Metals Digest	Completed				11/17/17	B/AG	SW3050B
TPH by GC (Extractable	Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	 53	mg/Kg	1	11/19/17	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	11/19/17	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	62		%	1	11/19/17	JRB	50 - 150 %
Volatiles							
1,1,1,2-Tetrachloroethane	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
1,1,1-Trichloroethane	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	3.1	ug/Kg	1	11/19/17	JLI	SW8260
1,1,2-Trichloroethane	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethane	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloroethene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
1,1-Dichloropropene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260

Client ID: 1305171116-30

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,2,3-Trichlorobenzene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
1,2,3-Trichloropropane	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
1,2,4-Trichlorobenzene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
1,2,4-Trimethylbenzene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dibromoethane	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichlorobenzene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichloroethane	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
1,2-Dichloropropane	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
1,3,5-Trimethylbenzene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
1,3-Dichlorobenzene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
1,3-Dichloropropane	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
1,4-Dichlorobenzene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
2,2-Dichloropropane	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
2-Chlorotoluene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
2-Hexanone	ND	26	ug/Kg	1	11/19/17	JLI	SW8260
2-Isopropyltoluene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
4-Chlorotoluene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
4-Methyl-2-pentanone	ND	26	ug/Kg	1	11/19/17	JLI	SW8260
Acetone	ND	260	ug/Kg	1	11/19/17	JLI	SW8260
Acrylonitrile	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Benzene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Bromobenzene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Bromochloromethane	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Bromodichloromethane	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Bromoform	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Bromomethane	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Carbon Disulfide	8.0	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Carbon tetrachloride	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Chlorobenzene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Chloroethane	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Chloroform	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Chloromethane	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
cis-1,2-Dichloroethene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
cis-1,3-Dichloropropene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Dibromochloromethane	ND	3.1	ug/Kg	1	11/19/17	JLI	SW8260
Dibromomethane	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Dichlorodifluoromethane	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Ethylbenzene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Hexachlorobutadiene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Isopropylbenzene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
m&p-Xylene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Methyl Ethyl Ketone	ND	31	ug/Kg	1	11/19/17	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	1	11/19/17	JLI	SW8260
Methylene chloride	ND	10	ug/Kg	1	11/19/17	JLI	SW8260
-	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Naphthalene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
n-Butylbenzene n-Propylbenzene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
o-Xylene	IND	J.Z	ug/Ng	1	11/13/11	JLI	G V V U Z U U

Client ID: 1305171116-30

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
p-Isopropyltoluene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
sec-Butylbenzene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Styrene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
tert-Butylbenzene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Tetrachloroethene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Tetrahydrofuran (THF)	ND	10	ug/Kg	1	11/19/17	JLI	SW8260
Toluene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Total Xylenes	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,2-Dichloroethene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,3-Dichloropropene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	10	ug/Kg	1	11/19/17	JLI	SW8260
Trichloroethene	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Trichlorofluoromethane	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Trichlorotrifluoroethane	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
Vinyl chloride	ND	5.2	ug/Kg	1	11/19/17	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	97		%	1	11/19/17	JLI	70 - 130 %
% Bromofluorobenzene	122		%	1	11/19/17	JLI	70 - 130 %
% Dibromofluoromethane	102		%	1	11/19/17	JLI	70 - 130 %
% Toluene-d8	101		%	1	11/19/17	JLI	70 - 130 %
Polynuclear Aromatic I	<u> </u>						
2-Methylnaphthalene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Acenaphthene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Acenaphthylene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Anthracene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Chrysene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Fluoranthene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Fluorene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Naphthalene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Phenanthrene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
Pyrene	ND	140	ug/Kg	10	11/18/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	57		%	10	11/18/17	DD	30 - 130 %
% Nitrobenzene-d5	68		%	10	11/18/17	DD	30 - 130 %
% Terphenyl-d14	67		%	10	11/18/17	DD	30 - 130 %
Field Extraction	Completed				11/16/17		SW5035A

Client ID: 1305171116-30

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

November 28, 2017

Reviewed and Released by: Ethan Lee, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

November 28, 2017

Blank RL

QA/QC Data

					%	%
Sample Result	Dup Result				Rec	RPD

SDG I.D.: GBZ43548

QA/QC Batch 410095 (mg/kg), QC Sample No: BZ43560 (BZ43551, BZ43553, BZ43554, BZ43555, BZ43557, BZ43559, BZ43559, BZ43560, BZ43561, BZ43562, BZ43563, BZ43564)

ICP Metals - Soil

Parameter

Arsenic	BRL	0.68	< 0.65	< 0.72	NC	95.9	84.9	75 - 125	30
Barium	BRL	0.34	27.1	32.2	17.2	82.8	88.2	75 - 125	30
Cadmium	BRL	0.34	< 0.33	< 0.36	NC	96.9	90.8	75 - 125	30
Chromium	BRL	0.34	9.58	9.07	5.50	98.7	94.7	75 - 125	30
Lead	BRL	0.34	< 0.33	< 0.36	NC	109	93.8	75 - 125	30
Selenium	BRL	1.4	<1.3	<1.4	NC	91.1	95.1	75 - 125	30
Silver	BRL	0.34	< 0.33	< 0.36	NC	92.0	93.5	75 - 125	30

QA/QC Batch 410257 (mg/kg), QC Sample No: BZ43564 (BZ43551, BZ43553, BZ43554, BZ43555, BZ43557, BZ43559, BZ43559, BZ43560, BZ43561, BZ43562, BZ43563, BZ43564)

Mercury - Soil BRL 0.03 < 0.03 < 0.03 NC 91.6 83.0 9.9 0.88 70 - 130 30

Comment:

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. MS acceptance range is 75-125%.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

November 28, 2017

QA/QC Data

SDG I.D.: GBZ43548 LCS **LCSD** LCS MS **MSD** MS Rec **RPD** Blank **RPD** RΙ RPD % Limits Limits Parameter % % % QA/QC Batch 410356 (ug/kg), QC Sample No: BZ43560 (BZ43551 (50X), BZ43554 (50X), BZ43559 (50X), BZ43560 (1X, 50X)) Volatiles - Soil 1,1,1,2-Tetrachloroethane ND 5.0 97 116 17.8 104 93 11.2 70 - 130 30 1,1,1-Trichloroethane ND 5.0 94 109 14.8 104 91 13.3 70 - 130 30 98 1,1,2,2-Tetrachloroethane ND 92 108 90 3.0 16.0 8 5 70 - 130 30 1,1,2-Trichloroethane ND 5.0 91 107 16.2 96 88 70 - 130 30 91 1,1-Dichloroethane ND 5.0 108 17.1 103 89 14.6 70 - 130 30 ND 5.0 88 104 95 1,1-Dichloroethene 16.7 85 11.1 70 - 130 30 96 ND 95 1,1-Dichloropropene 5.0 111 15.5 106 9.9 70 - 130 30 98 97 1,2,3-Trichlorobenzene ND 5.0 112 13.3 110 12.6 70 - 130 30 ND 5.0 92 105 79 1,2,3-Trichloropropane 13.2 96 19.4 70 - 130 30 1,2,4-Trichlorobenzene ND 5.0 92 105 13.2 106 94 12.0 70 - 130 30 ND 93 1,2,4-Trimethylbenzene 1.0 108 14.9 108 94 13.9 70 - 130 30 ND 5.0 104 123 16.7 92 88 4.4 1,2-Dibromo-3-chloropropane 70 - 130 30 1,2-Dibromoethane ND 5.0 94 110 15.7 99 90 9.5 70 - 130 30 ND 5.0 90 104 14.4 11.5 1,2-Dichlorobenzene 101 90 70 - 130 30 1,2-Dichloroethane ND 5.0 92 109 16.9 103 91 12.4 70 - 130 30 ND 93 109 1,2-Dichloropropane 5.0 15.8 102 94 8.2 70 - 130 30 93 1,3,5-Trimethylbenzene ND 1.0 109 15.8 108 95 12.8 70 - 130 30 ND 90 5.0 105 15.4 104 92 12.2 1,3-Dichlorobenzene 70 - 130 30 1,3-Dichloropropane ND 5.0 90 107 17.3 99 90 9.5 70 - 130 30 1,4-Dichlorobenzene ND 5.0 87 102 15.9 101 89 12.6 70 - 130 30 2,2-Dichloropropane ND 5.0 100 113 12.2 101 90 11.5 70 - 130 30 2-Chlorotoluene ND 5.0 95 109 13.7 110 94 15.7 70 - 130 30 ND 25 94 107 12.9 89 89 2-Hexanone 0.0 70 - 130 30 2-Isopropyltoluene ND 5.0 102 120 16.2 117 105 10.8 70 - 130 30 90 4-Chlorotoluene ND 5.0 105 15.4 106 92 14.1 70 - 130 30 ND 25 99 14.1 99 92 7.3 70 - 130 4-Methyl-2-pentanone 114 30 ND 10 77 Acetone 64 18.4 61 54 12.2 70 - 130 30 I,m ND 99 10.5 Acrylonitrile 5.0 110 101 92 9.3 70 - 130 30 Benzene ND 1.0 92 108 16.0 104 93 11.2 70 - 130 30 Bromobenzene ND 5.0 91 107 16.2 103 92 11.3 70 - 130 30 ND 91 Bromochloromethane 5.0 109 18.0 100 88 12.8 70 - 130 30 Bromodichloromethane ND 5.0 98 117 17.7 100 89 11.6 70 - 130 30 Bromoform ND 5.0 100 120 18.2 87 79 9.6 70 - 130 30 Bromomethane ND 5.0 99 118 17.5 59 67 12.7 70 - 130 30 Carbon Disulfide ND 5.0 99 117 16.7 83 73 12.8 70 - 130 30 ND Carbon tetrachloride 5.0 102 119 15.4 102 91 11.4 70 - 130 30 Chlorobenzene ND 5.0 89 104 15.5 102 91 70 - 130 30 96 ND 109 22 19 Chloroethane 5.0 12.7 70 - 130 14.6 30 Chloroform ND 5.0 88 104 16.7 98 87 11.9 70 - 130 30 Chloromethane ND 5.0 85 98 93 14.2 81 13.8 70 - 130 30 cis-1,2-Dichloroethene ND 5.0 94 110 15.7 103 93 10.2 70 - 130 30

QA/QC Data

SDG I.D.: GBZ43548

% % Blk LCS **LCSD** LCS MSD **RPD** MS MS Rec Blank RL % **RPD** % % RPD Limits Limits % Parameter cis-1,3-Dichloropropene ND 5.0 101 120 17.2 105 93 12.1 70 - 130 30 Dibromochloromethane ND 3.0 103 121 16.1 99 89 10.6 70 - 130 30 Dibromomethane ND 5.0 93 110 16.7 96 88 8.7 70 - 130 30 Dichlorodifluoromethane ND 5.0 90 104 14.4 94 70 - 130 30 84 11 2 Ethylbenzene ND 1.0 91 107 16.2 105 93 12.1 70 - 130 30 Hexachlorobutadiene ND 5.0 90 108 18.2 107 94 12.9 70 - 130 30 Isopropylbenzene ND 1.0 98 115 16.0 114 100 13.1 70 - 130 30 91 94 ND 2.0 107 105 m&p-Xylene 16.2 11.1 70 - 130 30 Methyl ethyl ketone ND 89 89 70 - 130 30 5.0 100 11.6 82 8.2 12.4 Methyl t-butyl ether (MTBE) ND 1.0 93 108 14.9 103 91 70 - 130 30 Methylene chloride ND 5.0 66 78 16.7 73 65 11.6 70 - 130 30 I.m ND 5.0 13.7 70 - 130 Naphthalene 116 133 128 116 9.8 30 n-Butylbenzene ND 1.0 94 109 14.8 110 96 13.6 70 - 130 30 n-Propylbenzene ND 1.0 91 106 15.2 108 94 13.9 70 - 130 30 116 o-Xylene ND 2.0 98 16.8 111 100 10 4 70 - 130 30 p-Isopropyltoluene ND 1.0 98 113 14.2 113 99 13.2 70 - 130 30 ND 97 114 100 sec-Butylbenzene 1.0 16.1 114 13.1 70 - 130 30 96 10.8 ND 5.0 94 113 18.4 107 Styrene 70 - 130 30 97 ND 1.0 115 17.0 99 tert-Butylbenzene 113 13.2 70 - 130 30 Tetrachloroethene ND 5.0 94 110 15.7 106 95 10.9 70 - 130 30 Tetrahydrofuran (THF) ND 5.0 89 101 12.6 93 84 10.2 70 - 130 30 92 Toluene ND 1.0 107 15.1 104 92 12.2 70 - 130 30 ND 5.0 89 17.4 91 trans-1,2-Dichloroethene 106 103 12.4 70 - 130 30 trans-1,3-Dichloropropene ND 5.0 99 116 15.8 98 89 9.6 70 - 130 30 trans-1,4-dichloro-2-butene ND 5.0 108 125 14.6 98 97 1.0 70 - 130 30 ND 95 110 14.6 Trichloroethene 5.0 103 92 11.3 70 - 130 30 Trichlorofluoromethane ND 5.0 89 103 14.6 18 25.0 70 - 130 14 30 m 95 110 Trichlorotrifluoroethane ND 5.0 105 93 14.6 12.1 70 - 130 30 ND 5.0 90 107 17.3 93 Vinyl chloride 81 13.8 70 - 130 30 % 1,2-dichlorobenzene-d4 103 % 101 100 1.0 101 99 2.0 70 - 130 30 % Bromofluorobenzene 92 % 99 99 0.0 99 98 1.0 70 - 130 30 % Dibromofluoromethane 99 % 97 107 103 3.8 104 7.0 70 - 130 30 % Toluene-d8 97 % 103 101 2.0 102 103 1.0 70 - 130 30 Comment:

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 410342 (ug/kg), QC Sample No: BZ43563 (BZ43548 (50X), BZ43549, BZ43553, BZ43554, BZ43555, BZ43557, BZ43559, BZ43561, BZ43562 (50X), BZ43563 (1X, 50X), BZ43564)

Volatiles - Soil											
1,1,1,2-Tetrachloroethane	ND	5.0	104	106	1.9	101	93	8.2	70 - 130	30	
1,1,1-Trichloroethane	ND	5.0	101	99	2.0	101	91	10.4	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	3.0	95	101	6.1	98	91	7.4	70 - 130	30	
1,1,2-Trichloroethane	ND	5.0	95	98	3.1	96	88	8.7	70 - 130	30	
1,1-Dichloroethane	ND	5.0	97	97	0.0	97	91	6.4	70 - 130	30	
1,1-Dichloroethene	ND	5.0	94	93	1.1	94	84	11.2	70 - 130	30	
1,1-Dichloropropene	ND	5.0	104	103	1.0	106	95	10.9	70 - 130	30	
1,2,3-Trichlorobenzene	ND	5.0	111	114	2.7	119	110	7.9	70 - 130	30	
1,2,3-Trichloropropane	ND	5.0	89	96	7.6	94	88	6.6	70 - 130	30	
1,2,4-Trichlorobenzene	ND	5.0	112	111	0.9	112	104	7.4	70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0	105	105	0.0	104	97	7.0	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	5.0	103	115	11.0	94	94	0.0	70 - 130	30	
1,2-Dibromoethane	ND	5.0	97	100	3.0	99	91	8.4	70 - 130	30	
1,2-Dichlorobenzene	ND	5.0	99	100	1.0	99	91	8.4	70 - 130	30	

QA/QC Data

SDG I.D.: GBZ43548

Parameter E	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
1,2-Dichloroethane	ND	5.0	95	98	3.1	100	91	9.4	70 - 130	30	
1,2-Dichloropropane	ND	5.0	100	100	0.0	101	92	9.3	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	103	105	1.9	105	96	9.0	70 - 130	30	
1,3-Dichlorobenzene	ND	5.0	102	103	1.0	102	94	8.2	70 - 130	30	
1,3-Dichloropropane	ND	5.0	95	97	2.1	99	89	10.6	70 - 130	30	
1,4-Dichlorobenzene	ND	5.0	100	100	0.0	98	90	8.5	70 - 130	30	
2,2-Dichloropropane	ND	5.0	108	105	2.8	100	95	5.1	70 - 130	30	
2-Chlorotoluene	ND	5.0	105	106	0.9	106	96	9.9	70 - 130	30	
2-Hexanone	ND	25	92	102	10.3	96	91	5.3	70 - 130	30	
2-Isopropyltoluene	ND	5.0	113	116	2.6	114	104	9.2	70 - 130	30	
4-Chlorotoluene	ND	5.0	103	102	1.0	101	95	6.1	70 - 130	30	
4-Methyl-2-pentanone	ND	25	96	106	9.9	102	94	8.2	70 - 130	30	
Acetone	ND	10	64	69	7.5	62	58	6.7	70 - 130	30	l,m
Acrylonitrile	ND	5.0	94	99	5.2	102	97	5.0	70 - 130	30	
Benzene	ND	1.0	98	98	0.0	101	91	10.4	70 - 130	30	
Bromobenzene	ND	5.0	100	103	3.0	99	91	8.4	70 - 130	30	
Bromochloromethane	ND	5.0	94	97	3.1	96	89	7.6	70 - 130	30	
Bromodichloromethane	ND	5.0	106	106	0.0	97	88	9.7	70 - 130	30	
Bromoform	ND	5.0	102	109	6.6	87	82	5.9	70 - 130	30	
Bromomethane	ND	5.0	105	105	0.0	64	53	18.8	70 - 130	30	m
Carbon Disulfide	ND	5.0	109	107	1.9	79	73	7.9	70 - 130	30	
Carbon tetrachloride	ND	5.0	108	106	1.9	100	92	8.3	70 - 130	30	
Chlorobenzene	ND	5.0	99	98	1.0	99	91	8.4	70 - 130	30	
Chloroethane	ND	5.0	98	99	1.0	22	19	14.6	70 - 130	30	m
Chloroform	ND	5.0	93	94	1.1	96	85	12.2	70 - 130	30	
Chloromethane	ND	5.0	88	89	1.1	93	87	6.7	70 - 130	30	
cis-1,2-Dichloroethene	ND	5.0	100	99	1.0	101	93	8.2	70 - 130	30	
cis-1,3-Dichloropropene	ND	5.0	111	112	0.9	105	96	9.0	70 - 130	30	
Dibromochloromethane	ND	3.0	109	111	1.8	97	91	6.4	70 - 130	30	
Dibromomethane	ND	5.0	96	102	6.1	96	88	8.7	70 - 130	30	
Dichlorodifluoromethane	ND	5.0	99	98	1.0	97	91	6.4	70 - 130	30	
Ethylbenzene	ND	1.0	102	101	1.0	103	92	11.3	70 - 130	30	
Hexachlorobutadiene	ND	5.0	109	108	0.9	102	93	9.2	70 - 130	30	
Isopropylbenzene	ND	1.0	107	109	1.9	108	98	9.7	70 - 130	30	
m&p-Xylene	ND	2.0	103	103	0.0	104	93	11.2	70 - 130	30	
Methyl ethyl ketone	ND	5.0	84	95	12.3	93	88	5.5	70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	1.0	96	99	3.1	101	94	7.2	70 - 130	30	
Methylene chloride	ND	5.0	72	71	1.4	73	65	11.6	70 - 130	30	m
Naphthalene	ND	5.0	123	128	4.0	141	131	7.4	70 - 130	30	m
n-Butylbenzene	ND	1.0	111	109	1.8	110	99	10.5	70 - 130	30	
n-Propylbenzene	ND	1.0	103	103	0.0	105	96	9.0	70 - 130	30	
o-Xylene	ND	2.0	109	110	0.9	110	99	10.5	70 - 130	30	
p-Isopropyltoluene	ND	1.0	111	112	0.9	110	102	7.5	70 - 130	30	
sec-Butylbenzene	ND	1.0	109	110	0.9	111	101	9.4	70 - 130	30	
Styrene	ND	5.0	105	105	0.0	107	95	11.9	70 - 130	30	
tert-Butylbenzene	ND	1.0	108	110	1.8	109	100	8.6	70 - 130	30	
Tetrachloroethene	ND	5.0	106	105	0.9	106	96	9.9	70 - 130	30	
Tetrahydrofuran (THF)	ND	5.0	84	92	9.1	94	88	6.6	70 - 130	30	
	ND	1.0	100	100	0.0	102	92	10.3	70 - 130	30	
trans-1,2-Dichloroethene	ND	5.0	100	99	1.0	100	92	8.3	70 - 130	30	
trans-1,3-Dichloropropene	ND	5.0	107	110	2.8	97	92	5.3	70 - 130	30	
	ND	5.0	114	121	6.0	103	98	5.0	70 - 130	30	
Trichloroethene	ND	5.0	102	101	1.0	103	92	11.3	70 - 130	30	

SDG I.D.: GBZ43548

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Trichlorofluoromethane	ND	5.0	93	92	1.1	17	15	12.5	70 - 130	30	m
Trichlorotrifluoroethane	ND	5.0	101	103	2.0	104	95	9.0	70 - 130	30	
Vinyl chloride	ND	5.0	97	97	0.0	90	84	6.9	70 - 130	30	
% 1,2-dichlorobenzene-d4	97	%	100	100	0.0	99	100	1.0	70 - 130	30	
% Bromofluorobenzene	97	%	101	99	2.0	100	100	0.0	70 - 130	30	
% Dibromofluoromethane	96	%	97	96	1.0	97	99	2.0	70 - 130	30	
% Toluene-d8	99	%	102	101	1.0	101	102	1.0	70 - 130	30	
Comment:											
Additional 8260 criteria: 10% of	LCS/LCSD	compounds	can be outside of acceptance	criteria as	long as	recover	y is 40-1	60%.			

QA/QC Batch 410085 (mg/Kg), QC Sample No: BZ43602 (BZ43551, BZ43553, BZ43554, BZ43555, BZ43557, BZ43559, BZ43560, BZ43561, BZ43562, BZ43563, BZ43564)

TPH by GC (Extractable Products) - Soil

ND

53

61

64

130

%

%

%

Ext. Petroleum H.C. (C9-C36)	ND	50		75	70	6.9	83	90	8.1	60 - 120	30
% n-Pentacosane	53	%		75	70	6.9	81	86	6.0	50 - 150	30
Comment:											

Additional surrogate criteria: LCS acceptance range is 60-120% MS acceptance range 50-150%. The ETPH/DRO LCS has been normalized based on the alkane calibration.

QA/QC Batch 410080 (ug/kg), QC Sample No: BZ43665 10X (BZ43560, BZ43561, BZ43562, BZ43563, BZ43564)

Polynuclear Aromatic HO	C - Soil									
2-Methylnaphthalene	ND	130	59	67	12.7	54	62	13.8	30 - 130	30
Acenaphthene	ND	130	67	78	15.2	65	69	6.0	30 - 130	30
Acenaphthylene	ND	130	66	75	12.8	62	65	4.7	30 - 130	30
Anthracene	ND	130	69	80	14.8	66	69	4.4	30 - 130	30
Benz(a)anthracene	ND	130	61	71	15.2	57	61	6.8	30 - 130	30
Benzo(a)pyrene	ND	130	65	73	11.6	60	62	3.3	30 - 130	30
Benzo(b)fluoranthene	ND	130	58	67	14.4	55	59	7.0	30 - 130	30
Benzo(ghi)perylene	ND	130	58	68	15.9	58	59	1.7	30 - 130	30
Benzo(k)fluoranthene	ND	130	68	76	11.1	64	64	0.0	30 - 130	30
Chrysene	ND	130	64	73	13.1	59	64	8.1	30 - 130	30
Dibenz(a,h)anthracene	ND	130	64	74	14.5	62	64	3.2	30 - 130	30
Fluoranthene	ND	130	68	78	13.7	65	67	3.0	30 - 130	30
Fluorene	ND	130	73	81	10.4	69	72	4.3	30 - 130	30
Indeno(1,2,3-cd)pyrene	ND	130	61	70	13.7	57	62	8.4	30 - 130	30
Naphthalene	ND	130	56	62	10.2	53	61	14.0	30 - 130	30
Phenanthrene	ND	130	59	69	15.6	56	58	3.5	30 - 130	30

78

66

77

81

13.7

11.2

11.0

13.2

64

54

64

68

67

59

74

69

4.6

8.8

1.5

30 - 130

30 - 130

30 - 130

14.5 30 - 130

30

30

30

30

68

59

69

71

% Terphenyl-d14 Comment:

% 2-Fluorobiphenyl

% Nitrobenzene-d5

Pyrene

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 410083 (ug/Kg), QC Sample No: BZ43769 2X (BZ43550, BZ43551, BZ43552, BZ43553, BZ43554, BZ43555, BZ43556, BZ43557, BZ43558)

22 10000 22 1000 / 22 10	,								
Polychlorinated Biphe	enyls - Soil								
PCB-1016	ND	33	84	98	15.4	83	64	25.9	40 - 140
PCB-1221	ND	33							40 - 140
PCB-1232	ND	33							40 - 140
PCB-1242	ND	33							40 - 140
PCB-1248	ND	33							40 - 140
PCB-1254	ND	33							40 - 140

QA/QC Data SDG I.D.: GBZ43548

									%	%	
		Blk	LCS	LCSD	LCS	MS	MSD	MS	Rec	RPD	
Parameter	Blank	RL	%	%	RPD	%	%	RPD	Limits	Limits	
PCB-1260	ND	33	90	115	24.4	75	70	6.9	40 - 140	30	
PCB-1262	ND	33							40 - 140	30	
PCB-1268	ND	33							40 - 140	30	
% DCBP (Surrogate Rec)	95	%	115	127	9.9	101	79	24.4	30 - 150	30	
% TCMX (Surrogate Rec)	82	%	93	103	10.2	87	70	21.7	30 - 150	30	
QA/QC Batch 410079 (ug/kg), C	C Samp	ole No: BZ43992 10X (BZ43551,	BZ43	553, BZ4	43554, I	BZ4355	55, BZ4	3557, E	3 Z 43559	['])	
Polynuclear Aromatic HC	- Soil										
2-Methylnaphthalene	ND	130	59	58	1.7	58	59	1.7	30 - 130	30	
Acenaphthene	ND	130	70	72	2.8	68	68	0.0	30 - 130	30	
Acenaphthylene	ND	130	64	64	0.0	63	63	0.0	30 - 130	30	
Anthracene	ND	130	71	69	2.9	68	65	4.5	30 - 130	30	
Benz(a)anthracene	ND	130	63	63	0.0	62	60	3.3	30 - 130	30	
Benzo(a)pyrene	ND	130	69	69	0.0	67	65	3.0	30 - 130	30	
Benzo(b)fluoranthene	ND	130	66	65	1.5	63	62	1.6	30 - 130	30	
Benzo(ghi)perylene	ND	130	54	60	10.5	55	56	1.8	30 - 130	30	
Benzo(k)fluoranthene	ND	130	74	75	1.3	67	65	3.0	30 - 130	30	
Chrysene	ND	130	69	70	1.4	67	64	4.6	30 - 130	30	
Dibenz(a,h)anthracene	ND	130	59	65	9.7	63	62	1.6	30 - 130	30	
Fluoranthene	ND	130	65	63	3.1	62	59	5.0	30 - 130	30	
Fluorene	ND	130	68	69	1.5	66	65	1.5	30 - 130	30	
Indeno(1,2,3-cd)pyrene	ND	130	51	57	11.1	57	56	1.8	30 - 130	30	
Naphthalene	ND	130	59	57	3.4	59	61	3.3	30 - 130	30	
Phenanthrene	ND	130	67	66	1.5	64	62	3.2	30 - 130	30	
Pyrene	ND	130	67	66	1.5	64	61	4.8	30 - 130	30	
% 2-Fluorobiphenyl	57	%	64	66	3.1	62	64	3.2	30 - 130	30	
% Nitrobenzene-d5	51	%	59	60	1.7	59	62	5.0	30 - 130	30	
% Terphenyl-d14	64	%	71	70	1.4	65	63	3.1	30 - 130	30	
Comment:											
Additional 8270 criteria:20% of con acceptance range for aqueous san		can be outside of acceptance criteria -110%, for soils 30-130%)	a as lon	g as reco	overy is a	it least 1	10%. (Ac	id surro	gates		
QA/QC Batch 410336 (ug/kg), C	C Sami	ole No: BZ44069 (BZ43562)									
Volatiles - Soil		,									
1,1,1,2-Tetrachloroethane	ND	5.0	99	99	0.0	82	81	1.2	70 - 130	30	
1,1,1-Trichloroethane	ND	5.0	101	100	1.0	92	92	0.0	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	3.0	100	102	2.0	81	78	3.8	70 - 130	30	
1,1,2-Trichloroethane	ND	5.0	98	100	2.0	84	82	2.4	70 - 130	30	
1,1-Dichloroethane	ND	5.0	102	103	1.0	92	92	0.0	70 - 130	30	
1,1-Dichloroethene	ND	5.0	104	105	1.0	91	88	3.4	70 - 130	30	
1,1-Dichloropropene	ND	5.0	100	101	1.0	89	88	1.1	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	5.0	99	102	3.0	71	65	8.8	70 - 130	30	m
1,2-Dibromoethane	ND	5.0	94	94	0.0	77	73	5.3	70 - 130	30	•••
1,2-Dichloroethane	ND	5.0	97	99	2.0	85	84	1.2	70 - 130	30	
1,2-Dichloropropane	ND	5.0	99	101	2.0	90	88	2.2	70 - 130	30	
1,3-Dichloropropane	ND	5.0	93	92	1.1	78	77	1.3	70 - 130	30	
2,2-Dichloropropane	ND	5.0	108	108	0.0	96	96	0.0	70 - 130	30	
2-Hexanone	ND	25	93	94	1.1	80	75	6.5	70 - 130	30	
4-Methyl-2-pentanone	ND	25	101	103	2.0	93	88	5.5	70 - 130	30	
Acetone	ND	10	79	80	1.3	117	109	7.1	70 - 130	30	
Acrylonitrile	ND	5.0	104	104	0.0	87	85	2.3	70 - 130	30	
Benzene	ND	1.0	96	97	1.0	85	85	0.0	70 - 130	30	
Bromochloromethane	ND	5.0	95	97	2.1	82	83	1.2	70 - 130	30	
2. S. Hoof Hot of Hot Hold		5.0				02	0-				

101

102

1.0

86

87

ND

Bromodichloromethane

5.0

1.2 70 - 130 30

SDG I.D.: GBZ43548

% % Blk LCS **LCSD** LCS **MSD RPD** MS MS Rec Blank RL **RPD** % % RPD Limits Limits % % Parameter ND 5.0 97 96 1.0 75 71 70 - 130 Bromoform 5.5 30 Bromomethane ND 5.0 100 98 2.0 65 71 8.8 70 - 130 30 m Carbon Disulfide ND 5.0 111 112 0.9 90 91 1.1 70 - 130 30 Carbon tetrachloride ND 5.0 103 106 2.9 89 90 1.1 70 - 130 30 Chlorobenzene ND 5.0 97 96 1.0 75 72 4.1 70 - 130 30 Chloroethane ND 5.0 110 1.8 99 97 2.0 70 - 130 30 112 Chloroform ND 5.0 96 95 1.0 87 85 2.3 70 - 130 30 ND 5.0 100 98 2.0 70 - 130 Chloromethane 82 80 2.5 30 ND 99 70 - 130 cis-1,2-Dichloroethene 5.0 102 3.0 87 84 3.5 30 cis-1,3-Dichloropropene ND 5.0 105 106 0.9 83 81 2.4 70 - 130 30 Dibromochloromethane ND 3.0 103 104 1.0 84 82 2.4 70 - 130 30 ND 99 83 79 4.9 70 - 130 Dibromomethane 5.0 100 1.0 30 Dichlorodifluoromethane ND 5.0 107 107 0.0 82 81 1.2 70 - 130 30 Ethylbenzene ND 1.0 97 96 1.0 82 80 2.5 70 - 130 30 m&p-Xylene ND 2.0 96 95 1.0 79 77 26 70 - 130 30 Methyl ethyl ketone ND 5.0 92 95 3.2 81 79 2.5 70 - 130 30 ND 94 92 Methyl t-butyl ether (MTBE) 1.0 100 100 0.0 2.2 70 - 130 30 Methylene chloride ND 5.0 73 74 1.4 89 86 3.4 70 - 130 30 ND 2.0 98 98 0.0 81 70 - 130 o-Xylene 78 3.8 30 Styrene ND 5.0 94 94 0.0 71 67 5.8 70 - 130 30 m Tetrachloroethene ND 5.0 105 106 0.9 90 88 2.2 70 - 130 30 Tetrahydrofuran (THF) ND 5.0 95 95 0.0 88 84 4.7 70 - 130 30 ND 1.0 100 101 Toluene 1.0 86 84 2.4 70 - 130 30 trans-1,2-Dichloroethene ND 5.0 100 100 0.0 83 83 0.0 70 - 130 30 trans-1,3-Dichloropropene ND 5.0 100 101 1.0 73 70 4.2 70 - 130 30 ND 99 98 Trichloroethene 5.0 1.0 86 85 1.2 70 - 130 30 Trichlorofluoromethane ND 5.0 106 104 1.9 93 93 0.0 70 - 130 30 98 Trichlorotrifluoroethane ND 5.0 110 0.0 99 110 1.0 70 - 130 30 ND 5.0 85 Vinyl chloride 104 104 0.0 85 0.0 70 - 130 30 % Dibromofluoromethane 99 % 97 97 0.0 98 100 2.0 70 - 130 30 % Toluene-d8 % 103 104 1.0 103 103 70 - 130 30 Comment: Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%. QA/QC Batch 410322 (ug/Kg), QC Sample No: BZ44767 2X (BZ43559, BZ43560, BZ43562, BZ43563) Polychlorinated Biphenyls - Soil PCB-1016 90 98 ND 33 8.5 82 78 5.0 40 - 140 30 33 30 PCB-1221 ND 40 - 140 PCB-1232 ND 33 40 - 140 30 PCB-1242 ND 33 40 - 140 30 PCB-1248 ND 33 40 - 140 30 PCB-1254 ND 33 40 - 140 30 ND 103 86 33 90 13.5 81 PCB-1260 6.0 40 - 140 30 PCB-1262 ND 33 40 - 140 30 33 PCB-1268 ND 40 - 140 30 % DCBP (Surrogate Rec) 93 % 119 119 0.0 101 93 8.2 30 - 150 30 % TCMX (Surrogate Rec) 85 % 101 107 5.8 87 81 7.1 30 - 150 30 QA/QC Batch 410812 (ug/kg), QC Sample No: BZ45301 (BZ43551) Volatiles - Soil 1,1,1,2-Tetrachloroethane ND 5.0 101 113 11.2 85 112 27.4 70 - 130 30 1,1,1-Trichloroethane ND 5.0 97 115 17.0 82 112 30.9 70 - 130 30 1,1,2,2-Tetrachloroethane ND 3.0 97 112 14.4 81 101

22.0

70 - 130

30

SDG I.D.: GBZ43548

% % Blk LCS LCSD LCS MS **MSD** MS Rec **RPD** % Blank RL % **RPD** % RPD Limits % Limits Parameter 1,1,2-Trichloroethane ND 5.0 93 109 101 15.8 81 22.0 70 - 130 30 1,1-Dichloroethane ND 5.0 96 113 82 110 29.2 70 - 130 30 16.3 1,1-Dichloroethene ND 5.0 90 105 15.4 72 96 28.6 70 - 130 30 ND 103 119 14.4 89 117 70 - 130 1,1-Dichloropropene 5.0 27 2 30 1,2-Dibromo-3-chloropropane ND 5.0 93 113 19.4 76 87 13.5 70 - 130 30 ND 5.0 97 111 84 102 70 - 130 30 1,2-Dibromoethane 13.5 19.4 ND 98 84 111 27.7 70 - 130 30 1,2-Dichloroethane 5.0 112 13.3 ND 97 5.0 111 13.5 86 112 26.3 70 - 130 30 1,2-Dichloropropane 94 70 - 130 1,3-Dichloropropane ND 5.0 106 12.0 83 101 19.6 30 2,2-Dichloropropane ND 5.0 102 115 12.0 81 110 30.4 70 - 130 30 ND 25 84 100 17.4 71 84 16.8 70 - 130 30 2-Hexanone ND 95 4-Methyl-2-pentanone 25 111 15.5 78 95 19.7 70 - 130 30 ND 10 70 80 13.3 46 52 12.2 70 - 130 30 Acetone m Acrylonitrile ND 5.0 87 105 18.8 77 94 19.9 70 - 130 30 96 Benzene ND 1.0 110 13.6 82 109 28.3 70 - 130 30 Bromochloromethane ND 5.0 90 109 19.1 77 100 26.0 70 - 130 30 99 ND 5.0 115 15.0 81 108 Bromodichloromethane 28.6 70 - 130 30 ND 94 107 Bromoform 5.0 12.9 72 92 24.4 70 - 130 30 109 ND 91 Bromomethane 5.0 18.0 42 61 36.9 70 - 130 30 m,r Carbon Disulfide ND 5.0 101 118 15.5 63 89 34.2 70 - 130 30 m,r ND 81 Carbon tetrachloride 5.0 101 118 15.5 112 32.1 70 - 130 30 Chlorobenzene ND 5.0 93 106 13.1 83 106 24.3 70 - 130 30 ND Chloroethane 5.0 85 102 18.2 14 19 30.3 70 - 130 30 m Chloroform ND 5.0 92 106 14.1 77 102 27.9 70 - 130 30 Chloromethane ND 5.0 78 91 15.4 69 91 27.5 70 - 130 30 m ND 94 cis-1,2-Dichloroethene 5.0 111 16.6 81 108 28.6 70 - 130 30 ND 105 124 90 25.2 cis-1,3-Dichloropropene 5.0 16.6 116 70 - 130 30 109 ND 103 82 Dibromochloromethane 3.0 118 13.6 28.3 70 - 130 30 105 Dibromomethane ND 5.0 97 111 13.5 81 25.8 70 - 130 30 Dichlorodifluoromethane ND 5.0 97 115 17.0 78 105 29.5 70 - 130 30 Ethylbenzene ND 1.0 95 108 12.8 84 107 24.1 70 - 130 30 ND m&p-Xylene 2.0 94 106 12.0 83 106 24.3 70 - 130 30 ND 5.0 85 100 16.2 68 83 19.9 70 - 130 Methyl ethyl ketone 30 91 Methyl t-butyl ether (MTBE) ND 1.0 109 18.0 80 102 24.2 70 - 130 30 Methylene chloride ND 5.0 77 89 14.5 60 79 27.3 70 - 130 30 o-Xylene ND 2.0 98 113 14.2 89 115 25.5 70 - 130 30 ND 99 12.3 Styrene 5.0 112 87 112 25.1 70 - 130 30 ND 5.0 97 14.4 114 Tetrachloroethene 112 86 28.0 70 - 130 30 ND 82 100 19.8 Tetrahydrofuran (THF) 5.0 67 82 20.1 70 - 130 30 Toluene ND 1.0 95 109 13.7 83 109 27.1 70 - 130 30 ND 5.0 94 109 14.8 80 108 29.8 trans-1,2-Dichloroethene 70 - 130 30 trans-1,3-Dichloropropene ND 5.0 101 117 14.7 83 106 24.3 70 - 130 30 ND Trichloroethene 5.0 96 111 14.5 83 111 28.9 70 - 130 30 Trichlorofluoromethane ND 5.0 82 97 16.8 13 26 66.7 70 - 130 30 m,r Trichlorotrifluoroethane ND 5.0 91 106 15.2 78 101 25.7 70 - 130 30 Vinyl chloride ND 5.0 85 100 89 29.7 16.2 70 - 130 66 30 % Dibromofluoromethane 98 % 95 100 5.1 97 97 0.0 70 - 130 30 99 % Toluene-d8 % 102 103 1.0 102 103 1.0 70 - 130 30

Comment:

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

m = This parameter is outside laboratory MS/MSD specified recovery limits.

r = This parameter is outside laboratory RPD specified recovery limits.

SDG I.D.: GBZ43548

% RPD % Blk LCS LCSD LCS MSMSD MS Rec Blank RL % % RPD % % RPD Limits Limits Parameter

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

November 28, 2017

Tuesday, November 28, 2017 Criteria: CT: GAM, RC

Sample Criteria Exceedances Report GBZ43548 - FO

State: CT

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Units
BZ43551	\$ETPH_SMR	Ext. Petroleum H.C. (C9-C36)	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	30000	3000	500	500	mg/Kg
BZ43551	\$ETPH_SMR	Ext. Petroleum H.C. (C9-C36)	CT / RSR GA,GAA (mg/kg) / Pesticides/TPH	30000	3000	500	500	mg/Kg
BZ43551	PB-SM	Lead	CT / RSR DEC RES (mg/kg) / Inorganics	498	3.7	400	400	mg/Kg
BZ43555	AS-SM	Arsenic	CT / RSR DEC RES (mg/kg) / Inorganics	10.2	0.72	10	10	mg/Kg
BZ43562	\$ETPH_SMR	Ext. Petroleum H.C. (C9-C36)	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	9500	500	500	500	mg/Kg
BZ43562	\$ETPH_SMR	Ext. Petroleum H.C. (C9-C36)	CT / RSR GA,GAA (mg/kg) / Pesticides/TPH	9500	500	500	500	mg/Kg
BZ43563	\$ETPH_SMR	Ext. Petroleum H.C. (C9-C36)	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	1800	110	500	500	mg/Kg
BZ43563	\$ETPH_SMR	Ext. Petroleum H.C. (C9-C36)	CT / RSR GA,GAA (mg/kg) / Pesticides/TPH	1800	110	500	500	mg/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Phoenix Environmental Labs, Inc. Client: Fuss & O'Neill, Inc.

Project Location: CT DOT HIGGANUM MAINTENANCE Project Number:

Laboratory Sample ID(s): BZ43548-BZ43564 Sampling Date(s): 11/16/2017

List RCP Methods Used (e.g., 8260, 8270, et cetera) 6010, 7470/7471, 8082, 8260, 8270, ETPH

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✓ Yes □ No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	<u>VPH and EPH methods only:</u> Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods)	☐ Yes ☐ No ☑ NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	✓ Yes □ No □ NA
4	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents acheived? See Section: VOA Narration.	☐ Yes ☑ No
5	a) Were reporting limits specified or referenced on the chain-of-custody?	✓ Yes □ No
	b) Were these reporting limits met?	✓ Yes □ No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	☐ Yes 🗹 No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	✓ Yes □ No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.
Authorized Signature: Position: Project Manager
Printed Name:Ethan Lee Date: _Tuesday, November 28, 2017
Name of Laboratory Phoenix Environmental Labs, Inc.

This certification form is to be used for RCP methods only.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

November 28, 2017 SDG I.D.: GBZ43548

SDG Comments

Metals Analysis:

The client requested a shorter list of elements than the 6010 RCP list. Only the RCRA 8 Metals are reported as requested on the chain of custody.

8270 Semi-volatile Organics:

The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-of-custody.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-FID11 11/18/17-1

Jeff Bucko, Chemist 11/18/17

BZ43553, BZ43554, BZ43555, BZ43557, BZ43559, BZ43560, BZ43561, BZ43564

The initial calibration (ETPHO26I) RSD for the compound list was less than 30% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-FID11 11/20/17-1

Jeff Bucko, Chemist 11/20/17

BZ43562, BZ43563

The initial calibration (ETPHO26I) RSD for the compound list was less than 30% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-FID11 11/21/17-1

Jeff Bucko, Chemist 11/21/17

BZ43551

The initial calibration (ETPHO26I) RSD for the compound list was less than 30% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

QC (Batch Specific):

Batch 410085 (BZ43602)

BZ43551, BZ43553, BZ43554, BZ43555, BZ43557, BZ43559, BZ43560, BZ43561, BZ43562, BZ43563, BZ43564

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional surrogate criteria: LCS acceptance range is 60-120% MS acceptance range 50-150%. The ETPH/DRO LCS has been normalized based on the alkane calibration.

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

MERLIN 11/20/17 08:06 Rick S

Rick Schweitzer, Chemist 11/20/17

BZ43551, BZ43553, BZ43554, BZ43555, BZ43557, BZ43559, BZ43560, BZ43561, BZ43562, BZ43563, BZ43564

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Certification Report

November 28, 2017 SDG I.D.: GBZ43548

Mercury Narration

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

QC (Site Specific):

Batch 410257 (BZ43564)

BZ43551, BZ43553, BZ43554, BZ43555, BZ43557, BZ43559, BZ43560, BZ43561, BZ43562, BZ43563, BZ43564

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 75 - 125 with the following exceptions: None.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. MS acceptance range is 75-125%.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. MS acceptance range is 75-125%.

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

ARCOS 11/17/17 10:57 Mike Arsenault, Chemist 11/17/17

BZ43551, BZ43553, BZ43554, BZ43555, BZ43557, BZ43559, BZ43560, BZ43561, BZ43562, BZ43563, BZ43564

Additional criteria for CCV and ICSAB:

Sodium and Potassium are poor performing elements, the laboratory's in-house limits are 85-115% (CCV) and 70-130% (ICSAB). The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

ARCOS 11/20/17 06:35 Mike Arsenault, Chemist 11/20/17

BZ43551

Additional criteria for CCV and ICSAB:

Sodium and Potassium are poor performing elements, the laboratory's in-house limits are 85-115% (CCV) and 70-130% (ICSAB). The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Site Specific):

Batch 410095 (BZ43560)

BZ43551, BZ43553, BZ43554, BZ43555, BZ43557, BZ43559, BZ43560, BZ43561, BZ43562, BZ43563, BZ43564

All LCS recoveries were within 75 - 125 with the following exceptions: None.

All MS recoveries were within 75 - 125 with the following exceptions: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

November 28, 2017 SDG I.D.: GBZ43548

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD24 11/20/17-1 Adam Werner, Chemist 11/20/17

BZ43551, BZ43555, BZ43556, BZ43557, BZ43558

The initial calibration (PC1103AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC1103BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD24 11/21/17-1 Adam Werner, Chemist 11/21/17

BZ43550, BZ43552, BZ43553, BZ43562, BZ43563

The initial calibration (PC1103AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC1103BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

<u>AU-ECD5 11/21/17-1</u> Adam Werner, Chemist 11/21/17

BZ43554, BZ43559, BZ43560

The initial calibration (PC1110AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC1110BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 410083 (BZ43769)

BZ43550, BZ43551, BZ43552, BZ43553, BZ43554, BZ43555, BZ43556, BZ43557, BZ43558

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Batch 410322 (BZ44767)

BZ43559, BZ43560, BZ43562, BZ43563

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

SVOASIM Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

<u>CHEM06 11/17/17-2</u> Damien Drobinski, Chemist 11/17/17

BZ43560, BZ43561, BZ43562, BZ43563, BZ43564

Initial Calibration Verification (CHEM06/BNSIM_1023):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

November 28, 2017 SDG I.D.: GBZ43548

SVOASIM Narration

Continuing Calibration Verification (CHEM06/1117_33-BNSIM_1023):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

CHEM25 11/17/17-2

Damien Drobinski, Chemist 11/17/17

BZ43551, BZ43553, BZ43554, BZ43555, BZ43557, BZ43559

Initial Calibration Verification (CHEM25/BNSIM_1109):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM25/1117_14-BNSIM_1109):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 410079 (BZ43992)

BZ43551, BZ43553, BZ43554, BZ43555, BZ43557, BZ43559

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Batch 410080 (BZ43665)

BZ43560, BZ43561, BZ43562, BZ43563, BZ43564

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

VOA Narration

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

November 28, 2017 SDG I.D.: GBZ43548

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 410342 (Samples: BZ43548, BZ43549, BZ43553, BZ43554, BZ43555, BZ43557, BZ43559, BZ43561, BZ43562, BZ43563, BZ43564): ----

The LCS/LCSD recovery is acceptable. One or more analytes in the site specific matrix spike recovery is below the method criteria, therefore a low bias is likely. (Bromomethane, Chloroethane, Methylene chloride, Trichlorofluoromethane)

The MS and/or the MSD recovery is above the upper range for one or more analytes that were not reported in the sample(s), therefore no significant bias is suspected. (Naphthalene)

The QC recoveries for one or more analytes is below the method criteria. A slight low bias is likely. (Acetone)

QC Batch 410356 (Samples: BZ43551, BZ43554, BZ43559, BZ43560): -----

The QC recoveries for one or more analytes is below the method criteria. A slight low bias is likely. (Acetone, Methylene chloride)

The LCS and/or the LCSD recovery is above the upper range, therefore a slight high bias is possible. (Naphthalene)

The LCS/LCSD recovery is acceptable. One or more analytes in the site specific matrix spike recovery is below the method criteria, therefore a low bias is likely. (Bromomethane, Chloroethane, Trichlorofluoromethane) Instrument:

CHEM14 11/19/17-1

Jane Li, Chemist 11/19/17

BZ43548, BZ43549, BZ43553, BZ43554, BZ43555, BZ43557, BZ43559, BZ43561, BZ43562, BZ43563, BZ43564

Initial Calibration Verification (CHEM14/VT-1117):

94% of target compounds met criteria.

The following compounds had %RSDs >20%: Acetone 39% (20%), Bromoform 21% (20%), Methylene chloride 34% (20%), Naphthalene 35% (20%), trans-1,4-dichloro-2-butene 28% (20%)

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM14/1119_02-VT-1117):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

CHEM14 11/19/17-2

Jane Li, Chemist 11/19/17

BZ43551, BZ43554, BZ43559, BZ43560

Initial Calibration Verification (CHEM14/VT-1117):

94% of target compounds met criteria.

The following compounds had %RSDs >20%: Acetone 39% (20%), Bromoform 21% (20%), Methylene chloride 34% (20%),

Naphthalene 35% (20%), trans-1,4-dichloro-2-butene 28% (20%)

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

November 28, 2017 SDG I.D.: GBZ43548

VOA Narration

Continuing Calibration Verification (CHEM14/1119_36-VT-1117):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

CHEM14 11/22/17-1

Jane Li, Chemist 11/22/17

BZ43551

Initial Calibration Verification (CHEM14/VT-1121):

90% of target compounds met criteria.

The following compounds had %RSDs >20%: 1,2-Dibromo-3-chloropropane 22% (20%), Acetone 31% (20%), Bromoform 24%

(20%), cis-1,3-Dichloropropene 22% (20%), Methylene chloride 29% (20%), trans-1,3-Dichloropropene 21% (20%)

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM14/1122_02-VT-1121):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

CHEM18 11/19/17-2

Jane Li, Chemist 11/19/17

BZ43562

Initial Calibration Verification (CHEM18/VT-M1117):

98% of target compounds met criteria.

The following compounds had %RSDs >20%: Chloroethane 22% (20%), Methylene chloride 37% (20%)

The following compounds did not meet recommended response factors: Acetone 0.086 (0.1)

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM18/1119M34-VT-M1117):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 410336 (BZ44069)

B743562

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

November 28, 2017 SDG I.D.: GBZ43548

VOA Narration

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%. Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Batch 410812 (BZ45301)

BZ43551

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%. Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QC (Site Specific):

Batch 410342 (BZ43563)

BZ43548, BZ43549, BZ43553, BZ43554, BZ43555, BZ43557, BZ43559, BZ43561, BZ43562, BZ43563, BZ43564

All LCS recoveries were within 70 - 130 with the following exceptions: Acetone(64%)

All LCSD recoveries were within 70 - 130 with the following exceptions: Acetone(69%)

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 70 - 130 with the following exceptions: Acetone(62%), Bromomethane(64%), Chloroethane(22%), Naphthalene(141%), Trichlorofluoromethane(17%)

All MSD recoveries were within 70 - 130 with the following exceptions: Acetone(58%), Bromomethane(53%), Chloroethane(19%), Methylene chloride(65%), Naphthalene(131%), Trichlorofluoromethane(15%)

All MS/MSD RPDs were less than 30% with the following exceptions: None.

A matrix effect is suspected when a MS/MSD recovery is outside of criteria. No further action is required if LCS/LCSD compounds are within criteria.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%. Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Batch 410356 (BZ43560)

BZ43551, BZ43554, BZ43559, BZ43560

All LCS recoveries were within 70 - 130 with the following exceptions: Acetone(64%), Methylene chloride(66%)

All LCSD recoveries were within 70 - 130 with the following exceptions: Naphthalene(133%)

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 70 - 130 with the following exceptions: Acetone(61%), Bromomethane(67%), Chloroethane(22%), Trichlorofluoromethane(18%)

All MSD recoveries were within 70 - 130 with the following exceptions: Acetone(54%), Bromomethane(59%), Chloroethane(19%), Methylene chloride(65%), Trichlorofluoromethane(14%)

All MS/MSD RPDs were less than 30% with the following exceptions: None.

A matrix effect is suspected when a MS/MSD recovery is outside of criteria. No further action is required if LCS/LCSD compounds are within criteria.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%. Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Temperature Narration

The samples were received at 2.6C with cooling initiated. (Note acceptance criteria is above freezing up to 6°C)

gicom/ctop

THIS CHOCK TO SEE TO SHE THOUSE THE SHE THE SH 43849 (days) Tutteround *Surcharge Applies LABORATORY 子されず Containers TWOSE O POSIH THEND Other _ TO THE STATE OF STATE - days) Standard (_ □ 24-Hour* □ 72-Hout* □ 48 Hour Zulycy 76. M.D ☐ 317 Iron Horse Way, Suite 204, Providence, RI 02908 🗆 80 Washington Street, Suite 301, Poughkeepsie, NY PROJECT NUMBER 278 Interstate Drive, West Springfield, MA 01089 STAILSAN 38421 Analysis Request OF DOT HERIANIM AMNTENANCE FACILITY . HIGGANDAY. CIT C835 Time Sampled REPORT TO: STEPPINIE WIERS RICHAETICALL + DRATHANE CALL 36712 Date: 11/116/13 CHAIN-OF-CUSTODY RECORD B=Sediment 146 Hattford Road, Manchester, CT 06040 D 56 Quarry Road, Trumbull, CT 06611 □ 1419 Richland Street, Columbia, SC 29201 PROJECT LOCATION Date Sampled C=Concrete T=Treatment Facility W=Waste A=Air 13ムジョニニレード Sample Number FUSS & O'NEILI PW=Potable Water ST=Stormwater (860) 646-2469 • www.PandO.com X=Other TRIP BANK Sampler's Signatures PROJECT NAME Transfer Check MW=Monitoring Well SW=Surface Water INVOICE TO: Source Codes: P.O. No.:

43557					
2 2	Charge Exceptions; A CT Tax Excempt A QA/(QC □ Other Duplicates 2 Blanks (Irem Nos. 0' 1 0.2)	11 10 13 1832 Reporting and Detection Limit Requirements. ARCP Deliverables MCP CAM Corn.	GH PMC, MES DEC	Additional Comments:	
メ	Time	1871	,		
4 1.235 X X X X X X X	Бате	11/10/11	, ,		
2.3 5	Accepted By A	Obouado He			
7	Relinquished By	200 (C)			
<u>Q</u>	Transfer Number	-	2	ţ	4
_			F	Page	78

43553

43554

855 P

43554

43550

7555

V

7 7

× X

X

× × × 526°

3060

× × × ×

X ×

× メメ

い<u>い</u>

0.750

Ċ ら

 $\frac{\mathfrak{D}}{1}$ 41--20 7

<u>r</u>0

ار

4

<u>د</u> د

 \ddot{x} ົວ

 \mathcal{C}

٥

Tem No.

3

1

メ

×

o ≘ <u>3</u>

123 c

·J

2.6 WICHTP

TO TO TOPO O PORNILL TO COL TO puniterinal transfer of the second se KUN PERSIF 43558 43559 No charge (days) 4386 Сопписле *Surcharge Applies LABORATORY in oroi d ais d HORN - MANIE Containers NEWS X THE DE TOSEH - MISTED Other _ 0 1908 E ᠬ U 48-Hour Kiandard (days) コック □ 24-Hour* □ 72-Hour* *0 D □ Other N 7 N 221614 Fts. AZ □ 317 Iron Horse Way, Suite 204, Providence, RI 02908 4 4 \sim □ 80 Washington Street, Suite 301, Poughkeepsie, NY 4 PROJECT NUMBER ☐ 78 Interstate Drive, West Springfield, MA 01089 Marine is エジススススタ × メ × × × S5to 38422 1525 X X X ×× × 00mm Request Analysis CT DCT HIGGIAMM MAINTENANCE FACUTY INGAMINAL 1340 Time Sampled 131C 11/14/17 1360 CHAIN-OF-CUSTODY RECORD Date: 11/10/19 B=Sediment REPORT TO: STOPENIE WIESSCHRICK (FED) + DAN THING CITY 146 Hartford Road, Manchester, CT 06040 □ 1419 Richland Street, Columbia, SC 29201 PROJECT LOCATION Date Sampled ☐ 56 Quarry Road, Trumbull, CT 66611 C=Concrete Source Code 9 હ ゅ \bigcirc 5 \Diamond 6 T=Treatment Facility
W=Waste A=Air - 25 -26 77 -22 332 -25 13057711116 - 44 Sample Number FUSS & O'NEILL PW=Potable Water ST=Stormwater Sampler's Signature: PROJECT NAME Transfer Check MW=Monitoring Well SW=Surface Water INVOICE TO: Source Codes: P.O. No.: X=Other 4 5 ken So. Ŧ 7

Date Time Charge Exceptions: ACT Tax Exempt AQA/QC Other L Duplicates Blanks (Bern Nos.)
Pate HUUHT
Accepted By
Relinquished By
Transter Number 1 2 2 3

Wednesday, December 06, 2017

Attn: Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

Sample ID#s: BZ46415 - BZ46429

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618

MA Lab Registration #M-CT007 ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530

RI Lab Registration #63

VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

December 06, 2017

SDG I.D.: GBZ46415

Volatile 8260 analysis:

The reporting level for Acrylonitrile is above the GWP criteria.

1,2-Dibromoethane and 1,2-Dibromo-3-chloropropane do not meet GWP criteria, this compound is analyzed by GC/ECD to achieve this criteria.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 06, 2017

FOR: Attn: Stefanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:11/22/178:00Location Code:F&O-DASReceived by:DL11/22/1719:16

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

<u>aboratory Data</u> SDG ID: GBZ46415

Phoenix ID: BZ46415

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

Client ID: 1305171122-01

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Volatiles							_
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
1,2-Dibromoethane	ND	0.25	ug/L	1	11/26/17	МН	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	11/26/17	МН	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
2-Hexanone	ND	5.0	ug/L	1	11/26/17	МН	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	11/26/17	МН	SW8260

ND	25 2.5 0.70 1.0 1.0 0.50	ug/L ug/L ug/L ug/L ug/L	1 1 1	11/26/17 11/26/17 11/26/17	MH MH	SW8260 SW8260
ND ND ND ND ND	0.70 1.0 1.0 0.50	ug/L ug/L			МН	SW8260
ND ND ND ND ND	1.0 1.0 0.50	ug/L	1	11/26/17		
ND ND ND ND	1.0 0.50			11/20/17	MH	SW8260
ND ND ND	0.50	ug/L	1	11/26/17	MH	SW8260
ND ND			1	11/26/17	МН	SW8260
ND	1.0	ug/L	1	11/26/17	MH	SW8260
	1.0	ug/L	1	11/26/17	MH	SW8260
	1.0	ug/L	1	11/26/17	MH	SW8260
ND	5.0	ug/L	1	11/26/17	MH	SW8260
ND	1.0	ug/L	1	11/26/17	MH	SW8260
ND	1.0	ug/L	1	11/26/17	MH	SW8260
ND	1.0	ug/L	1	11/26/17	MH	SW8260
ND	1.0	ug/L	1	11/26/17	МН	SW8260
ND	1.0	ug/L	1	11/26/17	МН	SW8260
ND	1.0	ug/L	1	11/26/17	МН	SW8260
ND	0.40	ug/L	1	11/26/17	МН	SW8260
ND	0.50	ug/L	1	11/26/17	МН	SW8260
ND	1.0	ug/L	1	11/26/17	МН	SW8260
ND	1.0	ug/L	1	11/26/17	МН	SW8260
ND	1.0		1	11/26/17	МН	SW8260
ND	0.40		1	11/26/17	МН	SW8260
ND	1.0		1	11/26/17	МН	SW8260
ND	1.0		1	11/26/17	МН	SW8260
ND	5.0		1	11/26/17	МН	SW8260
ND	1.0		1	11/26/17	МН	SW8260
		=	1			SW8260
ND	1.0		1	11/26/17	МН	SW8260
			1			SW8260
			1			SW8260
			1			SW8260
			1			SW8260
						SW8260
						SW8260
			1			SW8260
			1			SW8260
						SW8260
			1			SW8260
			1			SW8260
						SW8260
						SW8260
						SW8260
		_				SW8260
		=				SW8260
						SW8260
						SW8260
. 10		4g, L	,	, 20, 11		2.1.0200
102		%	1	11/26/17	МН	70 - 130 %
						70 - 130 % 70 - 130 %
						70 - 130 % 70 - 130 %
	ND N	ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 0.40 ND 0.50 ND 1.0	ND 1.0 ug/L ND 0.40 ug/L ND 1.0 u	ND 1.0 ug/L 1 ND 0.40 ug/L 1 ND 1.0 ug/L 1 ND	ND 1.0 ug/L 1 11/26/17 ND 0.40 ug/L 1 11/26/17 ND 0.50 ug/L 1 11/26/17 ND 1.0 ug/L 1 11/26/17 ND 0.40 ug/L 1 11/26/17 ND 1.0 ug/L 1 11/26/17	ND 1.0 ug/L 1 11/26/17 MH ND 0.40 ug/L 1 11/26/17 MH ND 0.50 ug/L 1 11/26/17 MH ND 1.0 ug/L 1 11/26/17 MH ND 0.40 ug/L 1 11/26/17 MH ND 1.0 ug/L 1 11/26/17 MH

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

Client ID: 1305171122-01

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	101		%	1	11/26/17	МН	70 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 06, 2017

Reviewed and Released by: Phyllis Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 06, 2017

FOR: Attn: Stefanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:11/22/179:22Location Code:F&O-DASReceived by:DL11/22/1719:16

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

<u>Laboratory Data</u> SDG ID: GBZ46415

Phoenix ID: BZ46416

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

Client ID: 1305171122-02

5	5	RL/		5		_	5 (
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Arsenic	< 0.004	0.004	mg/L	1	11/28/17	MA	SW6010C/E200.7
Barium	0.016	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Cadmium	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chromium	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Mercury	< 0.0002	0.0002	mg/L	1	11/27/17	RS	SW7470/245.1
Sodium	25.2	0.10	mg/L	1	11/28/17	MA	SW6010C/E200.7
Lead	< 0.002	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Selenium	< 0.010	0.010	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chloride	40.3	3.0	mg/L	1	11/22/17	MI	SM4500CLE-97,-11
Mercury Digestion	Completed				11/27/17	W/W	SW7470/245.1
Semi-Volatile Extraction	Completed				11/27/17	JJ/I	SW3520C
Total Metals Digestion	Completed				11/27/17	AG	
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
1,2-Dibromoethane	ND	0.25	ug/L	1	11/26/17	МН	SW8260

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	11/26/17	MH	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Acetone	ND	25	ug/L	1	11/26/17	MH	SW8260
Acrylonitrile	ND	2.5	ug/L	1	11/26/17	MH	SW8260
Benzene	ND	0.70	ug/L	1	11/26/17	МН	SW8260
Bromobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Bromochloromethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
Bromoform	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Bromomethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	11/26/17	МН	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloroform	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloromethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	МН	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
Dibromomethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Ethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
m&p-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Methylene chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Naphthalene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
n-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
o-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
	ND	1.0	ug/∟ ug/L	1	11/26/17	MH	SW8260
sec-Butylbenzene	ND	1.0	ug/L ug/L	1	11/26/17	МН	SW8260
Styrene tert Butulbanzana	ND	1.0		1	11/26/17	МН	SW8260
tert-Butylbenzene	ND ND	1.0	ug/L	1	11/26/17	MH	SW8260 SW8260
Tetrachloroethene			ug/L				
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	11/26/17	МН	SW8260

Total Xylenes			RL/					
Total Xylenes	Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
trans-1,2-Dichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 trans-1,3-Dichloropropene ND 0.40 ug/L 1 11/26/17 MH SW8260 Trichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorotifluoromethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 Action of Stronger 9 1 1 11/26/17 MH 70 - 130 % Bromflourobenzene-04 101 % 1 11/26/17 MH 70 - 130 % Bromflourobenzene-08 93 % 1 11/26/17 MH 70 - 130 % Sem	Toluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
trans-1,3-Dichloropropene ND 0.40 ug/L 1 11/26/17 MH SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/L 1 11/26/17 MH SW8260 Trichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorotloromethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorotlorodena ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH 5W8260 Vinyl chloride ND 1.0 Wg/L 1 11/26/17 MH 70 - 130 % AND 1.2-dichlorobenzene 93 % 1 11/26/17 MH 70 - 130 % Bromofluoromethane 99 % 1 11/26/17 MH 70 - 130	Total Xylenes	ND	1.0	ug/L	1	11/26/17	MH	SW8260
trans-1,4-dichloro-2-butene ND 5.0 ug/L 1 11/26/17 MH SW8260 Trichlorotethene ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorotifluoromethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorotifluorobethane ND 1.0 ug/L 1 11/26/17 MH SW8260 OA/QC Surroates W1,2-dichlorobenzene-d4 101 % 1 11/26/17 MH 70 - 130 % % Bromofluorobenzene 93 % 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane 99 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD	trans-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Trichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorofluoromethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorotrifluoroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 CAGC Surrogates % 1.2-dichlorobenzene-d4 101 % 1 11/26/17 MH 70 - 130 % % Bromofluoromethane 99 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM SIM 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM SIM 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM SIM 1 11/29/17 DD SW8270D (SIM) Acenaphthylaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthyl	trans-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
Trichlorofluoromethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorotifluoroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 CAYOC Surrogates W 1,2-dichlorobenzene-d4 101 % 1 11/26/17 MH 70 - 130 % % Bromofluorobenzene 93 % 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane 99 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benz(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene	trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Trichlorotrifluoroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 QA/QC Surrogates SW 1 11/26/17 MH 70 - 130 % % 1.2-dichlorobenzene 93 % 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane 99 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)anthracene ND 0.05 ug/L 1 11/29/17 DD	Trichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 QA/QC Surrogates W 1.2-dichlorobenzene-d4 101 % 1 11/26/17 MH 70 - 130 % % Bromofluorobenzene 93 % 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane 99 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM V 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM V 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM V V 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND<	Trichlorofluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
QA/QC Surrogates % 1,2-dichlorobenzene-044 101 % 1 11/26/17 MH 70 - 130 % % Bromofluorobenzene 93 % 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane 99 % 1 11/26/17 MH 70 - 130 % % Toluene-d8 100 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(s)phylene ND 0.05	Trichlorotrifluoroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
% 1,2-dichlorobenzene - 44 101 % 1 11/26/17 MH 70 - 130 % % Bromofluorobenzene - 93 % 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane - 99 % 1 11/26/17 MH 70 - 130 % % Toluene-d8 100 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2-Methylnaphthalene - ND	Vinyl chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
% Bromofluorobenzene 93 % 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane 99 % 1 11/26/17 MH 70 - 130 % % Toluene-d8 100 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17	QA/QC Surrogates							
% Dibromofluoromethane 99 % 1 11/26/17 MH 70 - 130 % % Toluene-d8 100 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)patrice ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1	% 1,2-dichlorobenzene-d4	101		%	1	11/26/17	MH	70 - 130 %
Semivolatiles by SIM Value 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1	% Bromofluorobenzene	93		%	1	11/26/17	MH	70 - 130 %
Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)filuoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)filuoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Dibenz(a,h)anthracene	% Dibromofluoromethane	99		%	1	11/26/17	MH	70 - 130 %
2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benz(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Dibenz(a,h)anthracene ND 0.01 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM)	% Toluene-d8	100		%	1	11/26/17	МН	70 - 130 %
Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benza(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 <td< td=""><td>Semivolatiles by SIM</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Semivolatiles by SIM							
Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benza(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 <td< td=""><td>2-Methylnaphthalene</td><td>ND</td><td>0.05</td><td>ug/L</td><td>1</td><td>11/29/17</td><td>DD</td><td>SW8270D (SIM)</td></td<>	2-Methylnaphthalene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benz(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1		ND	0.05	_	1	11/29/17	DD	SW8270D (SIM)
Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benz(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Dibenz(a,h)anthracene ND 0.01 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.09 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM)		ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.05 ug/L 1 11/29/17	Anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Dibenz(a,h)anthracene ND 0.01 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/	Benz(a)anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Dibenz(a,h)anthracene ND 0.01 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/	Benzo(a)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Dibenz(a,h)anthracene ND 0.01 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.09 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates 2-Fluorobiphenyl 79 % 1 <t< td=""><td>Benzo(b)fluoranthene</td><td>ND</td><td>0.05</td><td>ug/L</td><td>1</td><td>11/29/17</td><td>DD</td><td>SW8270D (SIM)</td></t<>	Benzo(b)fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Dibenz(a,h)anthracene ND 0.01 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.09 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates 8 2-Fluorobiphenyl 79 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 83 % 1 <td< td=""><td>Benzo(ghi)perylene</td><td>ND</td><td>0.05</td><td></td><td>1</td><td>11/29/17</td><td>DD</td><td>SW8270D (SIM)</td></td<>	Benzo(ghi)perylene	ND	0.05		1	11/29/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene ND 0.01 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.09 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates V 2-Fluorobiphenyl 79 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 83 % 1 11/29/17 DD 30 - 130 %	Benzo(k)fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene ND 0.01 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.09 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates V 2-Fluorobiphenyl 79 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 83 % 1 11/29/17 DD 30 - 130 %	Chrysene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.09 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates * 2-Fluorobiphenyl 79 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 83 % 1 11/29/17 DD 30 - 130 %	Dibenz(a,h)anthracene	ND	0.01	ug/L	1	11/29/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.09 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates 82-Fluorobiphenyl 79 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 83 % 1 11/29/17 DD 30 - 130 %	Fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Naphthalene ND 0.09 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates Surrogates ** 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 83 ** 1 11/29/17 DD 30 - 130 %	Fluorene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates Surrogate	Indeno(1,2,3-cd)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 83 % 1 11/29/17 DD 30 - 130 %	Naphthalene	ND	0.09	ug/L	1	11/29/17	DD	SW8270D (SIM)
QA/QC Surrogates % 2-Fluorobiphenyl 79 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 83 % 1 11/29/17 DD 30 - 130 %	•	ND	0.05		1	11/29/17	DD	
QA/QC Surrogates % 2-Fluorobiphenyl 79 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 83 % 1 11/29/17 DD 30 - 130 %	Pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
% 2-Fluorobiphenyl 79 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 83 % 1 11/29/17 DD 30 - 130 %	<u>=</u>							
% Nitrobenzene-d5 83 % 1 11/29/17 DD 30 - 130 %	% 2-Fluorobiphenyl	79		%	1	11/29/17	DD	30 - 130 %
% Terphenyl-d14 103 % 1 11/29/17 DD 30 - 130 %	• •	83		%	1	11/29/17	DD	30 - 130 %
	% Terphenyl-d14	103		%	1	11/29/17	DD	30 - 130 %

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

Client ID: 1305171122-02

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 06, 2017

Reviewed and Released by: Phyllis Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 06, 2017

FOR: Attn: Stefanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:11/22/1710:51Location Code:F&O-DASReceived by:DL11/22/1719:16

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

<u>aboratory Data</u> SDG ID: GBZ46415

Phoenix ID: BZ46417

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

Client ID: 1305171122-03

Silver (10um)	Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic (10um)	Silver (10um)							
Barium (10um) 0.020 0.002 mg/L 1 11/28/17 MA SW6010C/E200.7 Cadmium (10um) < 0.001 0.001 mg/L 1 11/28/17 MA SW6010C/E200.7 Chromium (10um) 0.002 0.001 mg/L 1 11/28/17 MA SW6010C/E200.7 Mercury (10um) < 0.0002 0.0002 mg/L 1 11/27/17 RS SW7470A/E245.1-3.0 Sodium (10um) 74.6 1.0 mg/L 10 11/28/17 MA SW6010C/E200.7 Lead (10um) 0.008 0.002 mg/L 1 11/28/17 MA SW6010C/E200.7 Selenium (10um) < 0.010 0.010 mg/L 1 11/28/17 MA SW6010C/E200.7 Selenium (10um) < 0.010 0.010 mg/L 1 11/28/17 MA SW6010C/E200.7 Selenium (10um) < 0.001 0.002 mg/L 1 11/28/17 MA SW6010C/E200.7 Chloride 88.9 3.0 <	,			=				
Cadmium (10um) < 0.001 0.001 mg/L 1 11/28/17 MA SW6010C/E200.7 Chromium (10um) 0.002 0.001 mg/L 1 11/28/17 MA SW6010C/E200.7 Mercury (10um) < 0.0002 0.0002 mg/L 1 11/28/17 RS SW7470A/E245.1-3.0 Sodium (10um) 74.6 1.0 mg/L 10 11/28/17 RS SW7470A/E245.1-3.0 Lead (10um) 0.008 0.002 mg/L 1 11/28/17 MA SW6010C/E200.7 Selenium (10um) < 0.010 0.010 mg/L 1 11/28/17 MA SW6010C/E200.7 Celenium (10um) < 0.010 0.010 mg/L 1 11/28/17 MA SW6010C/E200.7 Celenium (10um) < 0.010 0.010 mg/L 1 11/28/17 MA SW6010C/E200.7 Celenium (10um) < 0.010 0.010 mg/L 1 11/28/17 MA SW6010C/E200.7 Celenium (10um) < 0.010		0.020	0.002	=	1	11/28/17	MA	
Chromium (10um) 0.002 0.001 mg/L 1 11/28/17 MA SW6010C/E200.7 Mercury (10um) < 0.0002	, ,	< 0.001	0.001	=	1	11/28/17	MA	SW6010C/E200.7
Sodium (10um) 74.6 1.0 mg/L 10 11/28/17 EK SW6010C/E200.7 Lead (10um) 0.008 0.002 mg/L 1 11/28/17 MA SW6010C/E200.7 Selenium (10um) < 0.010 0.010 mg/L 1 11/28/17 MA SW6010C/E200.7 Chloride 88.9 3.0 mg/L 1 11/28/17 MA SW6010C/E200.7 Chloride 88.9 3.0 mg/L 1 11/22/17 MI SM4500CLE-97,-11 Mercury Digestion Completed Completed 1 11/27/17 WW SW7471B/E245.1-3.0 Semi-Volatile Extraction Completed Completed 1 11/27/17 JJ SW3520C Volatiles Volatiles V 1 11/26/17 MH SW8260 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1,2-Trichloroethane ND 1.0 ug/L 1 11/26/17 MH <td></td> <td>0.002</td> <td>0.001</td> <td>mg/L</td> <td>1</td> <td>11/28/17</td> <td>MA</td> <td>SW6010C/E200.7</td>		0.002	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Lead (10um) 0.008 0.002 mg/L 1 11/28/17 MA SW6010C/E200.7 Selenium (10um) < 0.010	, ,	< 0.0002	0.0002	mg/L	1	11/27/17	RS	SW7470A/E245.1-3.0
Selenium (10um) < 0.010 0.010 mg/L 1 11/28/17 MA SW6010C/E200.7 Chloride 88.9 3.0 mg/L 1 11/27/17 MI sM4500CLE-97,-11 Mercury Digestion Completed 11/27/17 W/W sW7471B/E245.1-3.0 Semi-Volatile Extraction Completed 11/27/17 JJ/I SW3520C Total Metals Digestion Completed 11/27/17 AG W3520C Volatiles 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1,1-Trichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1,2-Trichloroethane ND 0.50 ug/L 1 11/26/17 MH SW8260 1,1-Dichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dic	Sodium (10um)	74.6	1.0	mg/L	10	11/28/17	EK	SW6010C/E200.7
Chloride 88.9 3.0 mg/L 1 11/22/17 MI SM4500CLE-97,-11 Mercury Digestion Completed 11/27/17 W/W SW7471B/E245.1-3.0 Semi-Volatile Extraction Completed 11/27/17 JJ/I SW3520C Total Metals Digestion Completed 11/27/17 AG W3520C Volatiles Volatiles 11/27/17 AG W3520C 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1,1-Trichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1,2-Trichloroethane ND 0.50 ug/L 1 11/26/17 MH SW8260 1,1,2-Trichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloroethane ND 1.0 ug/L 1 11/26/17	Lead (10um)	0.008	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Mercury Digestion Completed 11/27/17 W/W SW7471B/E245.1-3.0 Semi-Volatile Extraction Completed 11/27/17 JJ/I SW3520C Total Metals Digestion Completed 11/27/17 AG Volatiles Volatiles SW3520C 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1,1-Trichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1,2-Trichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloropropene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,3-Trichloropropane ND 1.0 ug/L 1 11/26/17 MH SW8260 1	Selenium (10um)	< 0.010	0.010	mg/L	1	11/28/17	MA	SW6010C/E200.7
Semi-Volatile Extraction Completed 11/27/17 AG	Chloride	88.9	3.0	mg/L	1	11/22/17	MI	SM4500CLE-97,-11
Volatiles ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1,1-Trichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1,1-Trichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1,2-Tetrachloroethane ND 0.50 ug/L 1 11/26/17 MH SW8260 1,1,2-Trichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,3-Trichloropropane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 <t< td=""><td>Mercury Digestion</td><td>Completed</td><td></td><td></td><td></td><td>11/27/17</td><td>W/W</td><td>SW7471B/E245.1-3.0</td></t<>	Mercury Digestion	Completed				11/27/17	W/W	SW7471B/E245.1-3.0
Volatiles 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1,1-Trichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1,2-Tetrachloroethane ND 0.50 ug/L 1 11/26/17 MH SW8260 1,1,2-Trichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloropropene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,4-Trichlorobenzene ND 1.0 ug/L<	Semi-Volatile Extraction	Completed				11/27/17	JJ/I	SW3520C
1,1,1,2-Tetrachloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1,1-Trichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1,2-Tetrachloroethane ND 0.50 ug/L 1 11/26/17 MH SW8260 1,1,2-Trichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloropropene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 </td <td>Total Metals Digestion</td> <td>Completed</td> <td></td> <td></td> <td></td> <td>11/27/17</td> <td>AG</td> <td></td>	Total Metals Digestion	Completed				11/27/17	AG	
1,1,1-Trichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1,2,2-Tetrachloroethane ND 0.50 ug/L 1 11/26/17 MH SW8260 1,1,2-Trichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloropropene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260	<u>Volatiles</u>							
1,1,2,2-Tetrachloroethane ND 0.50 ug/L 1 11/26/17 MH SW8260 1,1,2-Trichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloropropene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260	1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1,2-Trichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloropropene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260	1,1,1-Trichloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1-Dichloroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloropropene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,3-Trichloropropane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260	1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,1-Dichloropropene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,3-Trichloropropane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260	1,1,2-Trichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloropropene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,3-Trichloropropane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260	1,1-Dichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,3-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,3-Trichloropropane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260	1,1-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,3-Trichloropropane ND 1.0 ug/L 1 11/26/17 MH SW8260 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260	1,1-Dichloropropene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,4-Trichlorobenzene ND 1.0 ug/L 1 11/26/17 MH SW8260	1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
, <u>,,</u> , 1	1,2,3-Trichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1.2.4 Trimethylbonzono ND 1.0 μα/Ι 1 11/26/47 ML SW/9260	1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,4-11IIIettiyibetizette ND 1.0 ug/L 1 11/20/17 MH 5W6260	1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2-Dibromo-3-chloropropane ND 0.50 ug/L 1 11/26/17 MH SW8260	1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
1,2-Dibromoethane ND 0.25 ug/L 1 11/26/17 MH SW8260	1,2-Dibromoethane	ND	0.25	ug/L	1	11/26/17	МН	SW8260

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	11/26/17	MH	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Acetone	ND	25	ug/L	1	11/26/17	MH	SW8260
Acrylonitrile	ND	2.5	ug/L	1	11/26/17	MH	SW8260
3 Benzene	ND	0.70	ug/L	1	11/26/17	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Bromochloromethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
Bromoform	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Bromomethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	11/26/17	МН	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloroform	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
Dibromomethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Ethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
sopropylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
m&p-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Methyl ethyl ketone Methyl t-butyl ether (MTBE)	ND	1.0	ug/∟ ug/L	1	11/26/17	MH	SW8260
	ND	1.0	ug/∟ ug/L	1	11/26/17	MH	SW8260
Methylene chloride	ND	1.0		1	11/26/17	MH	SW8260
Naphthalene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
n-Butylbenzene			ug/L				
n-Propylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
o-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
o-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Styrene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
ert-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Tetrachloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Гetrahydrofuran (ТНF)	ND	2.5	ug/L	1	11/26/17	MH	SW8260

Parameter	Client ID. 1303171122	-03	RL/					
Total Xylenes	Parameter	Result		Units	Dilution	Date/Time	Ву	Reference
trans-1,2-Dichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 trans-1,3-Dichloropropene ND 0.40 ug/L 1 11/26/17 MH SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/L 1 11/26/17 MH SW8260 Trichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorotifluoromethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH 50-130 Bromfolluoromethane 98 % 1 11/26/17 MH 70-130 % Semivolatiles by SIM 3 % 1 11/26/17 MH 70-130 % Semivolatiles by SIM 2 W 1 11/29/17 DD SW8270D (SIM)	Toluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
trans-1,3-Dichloropropene ND 0.40 ug/L 1 11/26/17 MH SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/L 1 11/26/17 MH SW8260 Trichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorotifuoromethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorotifuluoroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH 70-130 % ACEC Surrogates W 1 11/26/17 MH 70-130 % MS 8 Formoffluorobenzene 93 % 1 11/26/17 MH 70-130 % MS Bromoffluoromethane 98 % 1 11/26/17 MH 70-130 % MS T0-130 %	Total Xylenes	ND	1.0	ug/L	1	11/26/17	MH	SW8260
trans-1,4-dichloro-2-butene ND 5.0 ug/L 1 11/26/17 MH SW8260 Trichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichloroturomethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorotifluoroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Oky Compares ND 1.0 ug/L 1 11/26/17 MH SW8260 Oky Compares ND 1.0 ug/L 1 11/26/17 MH 70 - 130 % % 1.2-dichlorobenzene-d4 103 % 1 11/26/17 MH 70 - 130 % % Enromofluoromethane 98 % 1 11/26/17 MH 70 - 130 % % Toluene-d8 99 W % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L <td>trans-1,2-Dichloroethene</td> <td>ND</td> <td>1.0</td> <td>ug/L</td> <td>1</td> <td>11/26/17</td> <td>MH</td> <td>SW8260</td>	trans-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Trichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorofuloromethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorotiflurorethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 CAJCC Surrogates % 1.2-dichlorobenzene-044 103 % 1 11/26/17 MH 70 - 130 % % Bromofluorobenzene 93 % % 1 11/26/17 MH 70 - 130 % % Bromofluoromethane 98 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylane ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene<	trans-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
Trichlorofluoromethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorotrifluoroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 ACAC Surrogates Surogates Surogates Surogates Surogates MH 70 - 130 % % Dibromofluoromethane 93 % 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane 98 % 1 11/26/17 MH 70 - 130 % % Toluene-d8 99 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM Surogate -d8 99 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM Surogate -d8 99 Ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylane ND 0.05 ug/L 1 11/29/17 DD SW82720D (SIM)	trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Trichlorotrifluoroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 QA/QC Surrogates V Us Us 1 11/26/17 MH 70 - 130 % % 1.2-dichlorobenzene 93 - % 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane 98 - % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM S - % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM S - W 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM - W 0 0.05 Ug/L 1 11/29/17 DD SW8270D (SIM) Semivolatiles by SIM - 0 0.05 Ug/L 1 11/29/17 DD SW8270D (SIM) A-manual Collega ND 0.05 Ug/L	Trichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 QA/QC Surrogates W 1.2-dichlorobenzene-d4 103 % 1 11/26/17 MH 70 - 130 % % Bromofluorobenzene 93 % 1 11/26/17 MH 70 - 130 % % Toluene-d8 99 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM V 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM V V 1 11/29/17 DD SW8270D (SIM) Semivolatiles by SIM V V V 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benz	Trichlorofluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Mayor Surrogates % 1,2-dichlorobenzene-d4 103 % 1 11/26/17 MH 70 - 130 % % Bromofluorobenzene 93 % 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane 98 % 1 11/26/17 MH 70 - 130 % % Toluene-d8 99 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo (a)phrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo (s)flluoranthene <	Trichlorotrifluoroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
% 1,2-dichlorobenzene-d4 103 % 1 11/26/17 MH 70 - 130 % % Bromofluorobenzene 93 % 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane 98 % 1 11/26/17 MH 70 - 130 % % Toluene-d8 99 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benza(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17	Vinyl chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
% Bromofluorobenzene 93 % 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane 98 % 1 11/26/17 MH 70 - 130 % % Toluene-d8 99 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benz(a) phrame ND 0.05 ug/L 1 11/29/17	QA/QC Surrogates							
% Dibromofluoromethane 98 % 1 11/26/17 MH 70 - 130 % % Toluene-d8 99 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)phrene ND 0.05 ug/L 1 11/29/	% 1,2-dichlorobenzene-d4	103		%	1	11/26/17	MH	70 - 130 %
Semivolatiles by SIM 99 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benz(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L <td>% Bromofluorobenzene</td> <td>93</td> <td></td> <td>%</td> <td>1</td> <td>11/26/17</td> <td>MH</td> <td>70 - 130 %</td>	% Bromofluorobenzene	93		%	1	11/26/17	MH	70 - 130 %
Semivolatiles by SIM	% Dibromofluoromethane	98		%	1	11/26/17	MH	70 - 130 %
2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benza(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 <t< td=""><td>% Toluene-d8</td><td>99</td><td></td><td>%</td><td>1</td><td>11/26/17</td><td>МН</td><td>70 - 130 %</td></t<>	% Toluene-d8	99		%	1	11/26/17	МН	70 - 130 %
2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benza(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 <t< td=""><td>Semivolatiles by SIM</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Semivolatiles by SIM							
Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benz(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 <t< td=""><td></td><td>ND</td><td>0.05</td><td>ug/L</td><td>1</td><td>11/29/17</td><td>DD</td><td>SW8270D (SIM)</td></t<>		ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benz(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1	· ·	ND	0.05	_	1	11/29/17	DD	SW8270D (SIM)
Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benz(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.05		ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Dibenz(a,h)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.10 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 <td>• •</td> <td>ND</td> <td>0.05</td> <td>ug/L</td> <td>1</td> <td>11/29/17</td> <td>DD</td> <td>SW8270D (SIM)</td>	• •	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Dibenz(a,h)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.10 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 <td>Benz(a)anthracene</td> <td>ND</td> <td>0.05</td> <td>ug/L</td> <td>1</td> <td>11/29/17</td> <td>DD</td> <td>SW8270D (SIM)</td>	Benz(a)anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Dibenz(a,h)anthracene ND 0.01 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17	, ,	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Dibenz(a,h)anthracene ND 0.01 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.10 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17		ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Dibenz(a,h)anthracene ND 0.01 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.10 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates 8 1 11/29/17 DD 30 - 130 % </td <td></td> <td>ND</td> <td>0.05</td> <td>ug/L</td> <td>1</td> <td>11/29/17</td> <td>DD</td> <td>SW8270D (SIM)</td>		ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Dibenz(a,h)anthracene ND 0.01 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.10 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates 8 2-Fluorobiphenyl 76 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 75 % 1 11/29/17		ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene ND 0.01 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.10 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates S 2-Fluorobiphenyl 76 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 75 % 1 11/29/17 DD 30 - 130 %	` '	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.10 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates V 2-Fluorobiphenyl 76 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 75 % 1 11/29/17 DD 30 - 130 %	-	ND	0.01	ug/L	1	11/29/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.10 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates Surrogates W 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 75 % 1 11/29/17 DD 30 - 130 %	• • •	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Naphthalene ND 0.10 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates <	Fluorene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Naphthalene ND 0.10 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates <	Indeno(1,2,3-cd)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates Surrogate		ND	0.10	ug/L	1	11/29/17	DD	SW8270D (SIM)
Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates 8 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 75 % 1 11/29/17 DD 30 - 130 %	•	ND	0.05	_	1	11/29/17		
QA/QC Surrogates % 2-Fluorobiphenyl 76 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 75 % 1 11/29/17 DD 30 - 130 %		ND	0.05	=	1	11/29/17	DD	
% 2-Fluorobiphenyl 76 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 75 % 1 11/29/17 DD 30 - 130 %	•			-				,
% Nitrobenzene-d5 75 % 1 11/29/17 DD 30 - 130 %	-	76		%	1	11/29/17	DD	30 - 130 %
	· · ·	75		%	1	11/29/17	DD	30 - 130 %
	% Terphenyl-d14	98		%	1	11/29/17	DD	30 - 130 %

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

Client ID: 1305171122-03

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 06, 2017

Reviewed and Released by: Phyllis Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 06, 2017

FOR: Attn: Stefanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:11/22/1710:10Location Code:F&O-DASReceived by:DL11/22/1719:16

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ46415

Phoenix ID: BZ46418

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

Client ID: 1305171122-04

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Arsenic	< 0.004	0.004	mg/L	1	11/28/17	MA	SW6010C/E200.7
Barium	0.009	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Cadmium	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chromium	0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Mercury	< 0.0002	0.0002	mg/L	1	11/27/17	RS	SW7470/245.1
Sodium	9.29	0.10	mg/L	1	11/28/17	MA	SW6010C/E200.7
Lead	0.003	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Selenium	< 0.010	0.010	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chloride	8.5	3.0	mg/L	1	11/22/17	MI	SM4500CLE-97,-11
Mercury Digestion	Completed				11/27/17	W/W	SW7470/245.1
Semi-Volatile Extraction	Completed				11/27/17	JJ/I	SW3520C
Total Metals Digestion	Completed				11/27/17	AG	
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
1,2-Dibromoethane	ND	0.25	ug/L	1	11/26/17	МН	SW8260

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	11/26/17	МН	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
2-Hexanone	ND	5.0	ug/L	1	11/26/17	МН	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	11/26/17	МН	SW8260
Acetone	ND	25	ug/L	1	11/26/17	МН	SW8260
Acrylonitrile	ND	2.5	ug/L	1	11/26/17	МН	SW8260
Benzene	ND	0.70	ug/L	1	11/26/17	МН	SW8260
Bromobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Bromochloromethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
Bromoform	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromomethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Chlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Chloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Chloroform	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Chloromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
Dibromochloromethane	ND	0.40	ug/∟ ug/L	1	11/26/17	MH	SW8260
Dibromomethane	ND	1.0	ug/∟ ug/L	1	11/26/17	MH	SW8260
	ND	1.0	_	1	11/26/17	MH	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	11/26/17		SW8260
Ethylbenzene			ug/L	1		MH	
Hexachlorobutadiene	ND	0.40	ug/L		11/26/17	MH	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
m&p-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Methylene chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Naphthalene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
n-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
o-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Styrene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
tert-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Tetrachloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	11/26/17	MH	SW8260

Client ID. 1303171122	-04	RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Toluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Total Xylenes	ND	1.0	ug/L	1	11/26/17	MH	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Trichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	104		%	1	11/26/17	MH	70 - 130 %
% Bromofluorobenzene	92		%	1	11/26/17	MH	70 - 130 %
% Dibromofluoromethane	105		%	1	11/26/17	MH	70 - 130 %
% Toluene-d8	100		%	1	11/26/17	МН	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthylene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Chrysene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluorene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Naphthalene	ND	0.09	ug/L	1	11/29/17	DD	SW8270D (SIM)
Phenanthrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
QA/QC Surrogates			-				,
% 2-Fluorobiphenyl	70		%	1	11/29/17	DD	30 - 130 %
% Nitrobenzene-d5	75		%	1	11/29/17	DD	30 - 130 %
% Terphenyl-d14	101		%	1	11/29/17	DD	30 - 130 %
I - 7							

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

Client ID: 1305171122-04

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 06, 2017

Reviewed and Released by: Phyllis Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 06, 2017

FOR: Attn: Stefanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:11/22/1712:13Location Code:F&O-DASReceived by:DL11/22/1719:16

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

<u>aboratory Data</u> SDG ID: GBZ46415

Phoenix ID: BZ46419

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

Client ID: 1305171122-05

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver (10um)	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Arsenic (10um)	< 0.004	0.004	mg/L	1	11/28/17	MA	SW6010C/E200.7
Barium (10um)	0.019	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Cadmium (10um)	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chromium (10um)	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Mercury (10um)	< 0.0002	0.0002	mg/L	1	11/27/17	RS	SW7470A/E245.1-3.0
Sodium (10um)	97.7	1.0	mg/L	10	11/28/17	EK	SW6010C/E200.7
Lead (10um)	0.004	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Selenium (10um)	< 0.010	0.010	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chloride	157	3.0	mg/L	1	11/22/17	MI	SM4500CLE-97,-11
Mercury Digestion	Completed				11/27/17	W/W	SW7471B/E245.1-3.0
Semi-Volatile Extraction	Completed				11/27/17	JJ/I	SW3520C
Total Metals Digestion	Completed				11/27/17	AG	
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
1,2-Dibromoethane	ND	0.25	ug/L	1	11/26/17	MH	SW8260

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	11/26/17	MH	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Acetone	ND	25	ug/L	1	11/26/17	MH	SW8260
Acrylonitrile	ND	2.5	ug/L	1	11/26/17	MH	SW8260
Benzene	ND	0.70	ug/L	1	11/26/17	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Bromochloromethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
Bromoform	ND	1.0	ug/L	1	11/26/17	МН	SW8260
3romomethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	11/26/17	МН	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloroform	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
Dibromomethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Ethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
m&p-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Methyl ethyl ketone Methyl t-butyl ether (MTBE)	ND	1.0	ug/∟ ug/L	1	11/26/17	MH	SW8260
	ND	1.0	ug/∟ ug/L	1	11/26/17	MH	SW8260
Methylene chloride	ND	1.0			11/26/17	MH	SW8260
Naphthalene	ND	1.0	ug/L	1 1	11/26/17	МН	SW8260
n-Butylbenzene			ug/L				
n-Propylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
o-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
o-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Styrene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
tert-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Tetrachloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	11/26/17	MH	SW8260

Client ID. 1303171122	-03	RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Toluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Total Xylenes	ND	1.0	ug/L	1	11/26/17	MH	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Trichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	101		%	1	11/26/17	MH	70 - 130 %
% Bromofluorobenzene	93		%	1	11/26/17	MH	70 - 130 %
% Dibromofluoromethane	107		%	1	11/26/17	MH	70 - 130 %
% Toluene-d8	99		%	1	11/26/17	МН	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthylene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Anthracene	0.09	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(a)pyrene	0.06	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	0.07	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	0.06	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	0.05	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Chrysene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	0.02	0.01	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluorene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Naphthalene	ND	0.10	ug/L	1	11/29/17	DD	SW8270D (SIM)
Phenanthrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	76		%	1	11/29/17	DD	30 - 130 %
% Nitrobenzene-d5	72		%	1	11/29/17	DD	30 - 130 %
% Terphenyl-d14	101		%	1	11/29/17	DD	30 - 130 %
• •							

Client ID: 1305171122-05

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 06, 2017

Reviewed and Released by: Phyllis Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 06, 2017

FOR: Attn: Stefanie Wierszchalek

see "By" below

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:11/22/1711:18Location Code:F&O-DASReceived by:DL11/22/1719:16

Rush Request: Standard Analyzed by:

P.O.#: 20160476.A20

Laboratory Data

SDG ID: GBZ46415

Phoenix ID: BZ46420

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

_		RL/				_	
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Arsenic	< 0.004	0.004	mg/L	1	11/28/17	MA	SW6010C/E200.7
Barium	0.037	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Cadmium	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chromium	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Mercury	< 0.0002	0.0002	mg/L	1	11/27/17	RS	SW7470/245.1
Sodium	82.8	1.0	mg/L	10	11/28/17	EK	SW6010C/E200.7
Lead	0.004	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Selenium	< 0.010	0.010	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chloride	136	3.0	mg/L	1	11/22/17	MI	SM4500CLE-97,-11
Mercury Digestion	Completed				11/27/17	W/W	SW7470/245.1
Semi-Volatile Extraction	Completed				11/27/17	JJ/I	SW3520C
Total Metals Digestion	Completed				11/27/17	AG	
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
1,2-Dibromoethane	ND	0.25	ug/L	1	11/26/17	МН	SW8260

Client ID: 1305171122-		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	11/26/17	MH	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Acetone	ND	25	ug/L	1	11/26/17	MH	SW8260
Acrylonitrile	ND	2.5	ug/L	1	11/26/17	MH	SW8260
Benzene	ND	0.70	ug/L	1	11/26/17	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Bromochloromethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
Bromoform	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Bromomethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	11/26/17	МН	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloroform	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloromethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	МН	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
Dibromomethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Ethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
m&p-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Methylene chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Naphthalene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
n-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
o-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
	ND	1.0	ug/L	1	11/26/17	MH	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Styrene	ND	1.0	ug/L ug/L	1	11/26/17	МН	SW8260 SW8260
tert-Butylbenzene	ND	1.0	ug/L ug/L	1	11/26/17	МН	SW8260 SW8260
Tetrachloroethene							
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	11/26/17	МН	SW8260

Client ID. 1303171122	-00	RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Toluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Total Xylenes	ND	1.0	ug/L	1	11/26/17	МН	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	МН	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	11/26/17	МН	SW8260
Trichloroethene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Vinyl chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	102		%	1	11/26/17	MH	70 - 130 %
% Bromofluorobenzene	93		%	1	11/26/17	MH	70 - 130 %
% Dibromofluoromethane	100		%	1	11/26/17	MH	70 - 130 %
% Toluene-d8	101		%	1	11/26/17	МН	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthylene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Chrysene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluorene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Naphthalene	ND	0.09	ug/L	1	11/29/17	DD	SW8270D (SIM)
Phenanthrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	75		%	1	11/29/17	DD	30 - 130 %
% Nitrobenzene-d5	75		%	1	11/29/17	DD	30 - 130 %
% Terphenyl-d14	109		%	1	11/29/17	DD	30 - 130 %

Client ID: 1305171122-06

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 06, 2017

Reviewed and Released by: Phyllis Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 06, 2017

FOR: Attn: Stefanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:11/22/1713:47Location Code:F&O-DASReceived by:DL11/22/1719:16

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

<u>Laboratory Data</u> SDG ID: GBZ46415

Phoenix ID: BZ46421

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Arsenic	< 0.004	0.004	mg/L	1	11/28/17	MA	SW6010C/E200.7
Barium	0.018	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Cadmium	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chromium	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Mercury	< 0.0002	0.0002	mg/L	1	11/27/17	RS	SW7470/245.1
Sodium	55.1	1.0	mg/L	10	11/28/17	EK	SW6010C/E200.7
Lead	0.004	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Selenium	< 0.010	0.010	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chloride	80.8	3.0	mg/L	1	11/22/17	MI	SM4500CLE-97,-11
Mercury Digestion	Completed				11/27/17	W/W	SW7470/245.1
PCB Extraction	Completed				11/27/17	NT	SW3510C
Extraction for Pest (2 Liter)	Completed				11/27/17	NT	SW3510C
Semi-Volatile Extraction	Completed				11/27/17	JJ/I	SW3520C
Total Metals Digestion	Completed				11/27/17	AG	
Polychlorinated Biph	<u>enyls</u>						
PCB-1016	ND	0.10	ug/L	1	11/28/17	AW	SW8082A
PCB-1221	ND	0.10	ug/L	1	11/28/17	AW	SW8082A
PCB-1232	ND	0.10	ug/L	1	11/28/17	AW	SW8082A
PCB-1242	ND	0.10	ug/L	1	11/28/17	AW	SW8082A
PCB-1248	ND	0.10	ug/L	1	11/28/17	AW	SW8082A
PCB-1254	ND	0.10	ug/L	1	11/28/17	AW	SW8082A
PCB-1260	ND	0.10	ug/L	1	11/28/17	AW	SW8082A
PCB-1262	ND	0.10	ug/L	1	11/28/17	AW	SW8082A
PCB-1268	ND	0.10	ug/L	1	11/28/17	AW	SW8082A
QA/QC Surrogates							
% DCBP	94		%	1	11/28/17	AW	30 - 150 %

Client ID: 1305171122-07

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% TCMX	88		%	1	11/28/17	AW	30 - 150 %
Pesticides							
4,4' -DDD	ND	0.052	ug/L	1	11/28/17	CW	SW8081B
4,4' -DDE	ND	0.052	ug/L	1	11/28/17	CW	SW8081B
4,4' -DDT	ND	0.052	ug/L	1	11/28/17	CW	SW8081B
a-BHC	ND	0.026	ug/L	1	11/28/17	CW	SW8081B
Alachlor	ND	0.078	ug/L	1	11/28/17	CW	SW8081B
Aldrin	ND	0.002	ug/L	1	11/28/17	CW	SW8081B
b-BHC	ND	0.005	ug/L	1	11/28/17	CW	SW8081B
Chlordane	ND	0.3	ug/L	1	11/28/17	CW	SW8081B
d-BHC	ND	0.026	ug/L	1	11/28/17	CW	SW8081B
Dieldrin	ND	0.002	ug/L	1	11/28/17	CW	SW8081B
Endosulfan I	ND	0.052	ug/L	1	11/28/17	CW	SW8081B
Endosulfan II	ND	0.052	ug/L	1	11/28/17	CW	SW8081B
Endosulfan Sulfate	ND	0.052	ug/L	1	11/28/17	CW	SW8081B
Endrin	ND	0.052	ug/L	1	11/28/17	CW	SW8081B
Endrin Aldehyde	ND	0.052	ug/L	1	11/28/17	CW	SW8081B
Endrin ketone	ND	0.052	ug/L	1	11/28/17	CW	SW8081B
g-BHC (Lindane)	ND	0.026	ug/L	1	11/28/17	CW	SW8081B
Heptachlor	ND	0.026	ug/L	1	11/28/17	CW	SW8081B
Heptachlor epoxide	ND	0.026	ug/L	1	11/28/17	CW	SW8081B
Methoxychlor	ND	0.10	ug/L	1	11/28/17	CW	SW8081B
Toxaphene	ND	1.0	ug/L	1	11/28/17	CW	SW8081B
QA/QC Surrogates				•			
%DCBP (Surrogate Rec)	109		%	1	11/28/17	CW	30 - 150 %
%TCMX (Surrogate Rec)	108		%	1	11/28/17	CW	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
1,2-Dibromoethane	ND	0.25	ug/L	1	11/26/17	MH	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	11/26/17	MH	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	МН	SW8260

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
2-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
2-Hexanone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
I-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
-Methyl-2-pentanone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Acetone	ND	25	ug/L	1	11/26/17	MH	SW8260
Acrylonitrile	ND	2.5	ug/L	1	11/26/17	MH	SW8260
Benzene	ND	0.70	ug/L	1	11/26/17	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromochloromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
Bromoform	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromomethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloroform	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloromethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
is-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
is-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	МН	SW8260
ibromochloromethane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
ibromomethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
richlorodifluoromethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
thylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
lexachlorobutadiene	ND	0.40	ug/L	1	11/26/17	МН	SW8260
sopropylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
n&p-Xylene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Nethyl ethyl ketone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Methylene chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
laphthalene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
-Propylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
ec-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
ityrene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
ert-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
etrachloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
	ND	2.5	ug/L	1	11/26/17	MH	SW8260
etrahydrofuran (THF)	ND	1.0	=	1	11/26/17	MH	SW8260
oluene otal Yylonos	ND	1.0	ug/L ug/L	1	11/26/17	МН	SW8260
otal Xylenes							
rans-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
ans-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
ans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	11/26/17	MH	SW8260
richloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
richlorofluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
richlorotrifluoroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260

Client ID: 1305171122-07

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Vinyl chloride	ND	1.0	ug/L	1	11/26/17	МН	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	102		%	1	11/26/17	MH	70 - 130 %
% Bromofluorobenzene	93		%	1	11/26/17	MH	70 - 130 %
% Dibromofluoromethane	102		%	1	11/26/17	MH	70 - 130 %
% Toluene-d8	102		%	1	11/26/17	МН	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthylene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Chrysene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	0.01	0.01	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluorene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Naphthalene	ND	0.10	ug/L	1	11/29/17	DD	SW8270D (SIM)
Phenanthrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	70		%	1	11/29/17	DD	30 - 130 %
% Nitrobenzene-d5	69		%	1	11/29/17	DD	30 - 130 %
% Terphenyl-d14	96		%	1	11/29/17	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 06, 2017

Reviewed and Released by: Phyllis Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 06, 2017

FOR: Attn: Stefanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:11/22/1712:32Location Code:F&O-DASReceived by:DL11/22/1719:16

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ46415

Phoenix ID: BZ46422

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver (10um)	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Arsenic (10um)	< 0.004	0.004	mg/L	1	11/28/17	MA	SW6010C/E200.7
Barium (10um)	0.023	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Cadmium (10um)	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chromium (10um)	0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Mercury (10um)	< 0.0002	0.0002	mg/L	1	11/27/17	RS	SW7470A/E245.1-3.0
Sodium (10um)	75.5	1.0	mg/L	10	11/28/17	EK	SW6010C/E200.7
Lead (10um)	< 0.002	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Selenium (10um)	< 0.010	0.010	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chloride	70.9	3.0	mg/L	1	11/22/17	MI	SM4500CLE-97,-11
Mercury Digestion	Completed				11/27/17	W/W	SW7471B/E245.1-3.0
PCB Extraction	Completed				11/27/17	NT	SW3510C
Semi-Volatile Extraction	Completed				11/27/17	JJ/I	SW3520C
Total Metals Digestion	Completed				11/27/17	AG	
Polychlorinated Biph	enyls						
PCB-1016	ND	0.47	ug/L	1	11/28/17	AW	SW8082A
PCB-1221	ND	0.47	ug/L	1	11/28/17	AW	SW8082A
PCB-1232	ND	0.47	ug/L	1	11/28/17	AW	SW8082A
PCB-1242	ND	0.47	ug/L	1	11/28/17	AW	SW8082A
PCB-1248	ND	0.47	ug/L	1	11/28/17	AW	SW8082A
PCB-1254	ND	0.47	ug/L	1	11/28/17	AW	SW8082A
PCB-1260	ND	0.47	ug/L	1	11/28/17	AW	SW8082A
PCB-1262	ND	0.47	ug/L	1	11/28/17	AW	SW8082A
PCB-1268	ND	0.47	ug/L	1	11/28/17	AW	SW8082A
QA/QC Surrogates							
% DCBP	108		%	1	11/28/17	AW	30 - 150 %
% TCMX	118		%	1	11/28/17	AW	30 - 150 %

Client ID: 1305171122-08

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
1,2-Dibromoethane	ND	0.25	ug/L	1	11/26/17	МН	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	11/26/17	МН	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Acetone	ND	25	ug/L	1	11/26/17	MH	SW8260
	ND	2.5	ug/L	1	11/26/17	MH	SW8260
Acrylonitrile Benzene	ND	0.70	ug/L	1	11/26/17	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromochloromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
	ND	0.50		1	11/26/17	MH	SW8260
Bromodichloromethane Bromoform	ND	1.0	ug/L ug/L	1	11/26/17	MH	SW8260
Bromomethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Carbon Disulfide Carbon tetrachloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
	ND	1.0		1	11/26/17	MH	SW8260
Chloropthono	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloroform	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloroform	ND		ug/L	•			
Chloromethane		1.0	ug/L	1	11/26/17	MH	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
Dibromomethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Ethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260

Client ID: 1305171122-08

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
m&p-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Methylene chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Naphthalene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
n-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
o-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Styrene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
tert-Butylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Tetrachloroethene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	11/26/17	МН	SW8260
Toluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Total Xylenes	ND	1.0	ug/L	1	11/26/17	МН	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	МН	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	11/26/17	МН	SW8260
Trichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
QA/QC Surrogates	ND	1.0	ug/L	· ·	11/20/11	1711 1	OW0200
% 1,2-dichlorobenzene-d4	100		%	1	11/26/17	МН	70 - 130 %
% Bromofluorobenzene	94		%	1	11/26/17	MH	70 - 130 %
% Dibromofluoromethane	102		%	1	11/26/17	MH	70 - 130 %
% Toluene-d8	101		%	1	11/26/17	MH	70 - 130 %
	101		70	Į.	11/20/17	1411 1	70 100 70
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthylene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Anthracene	0.06	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Chrysene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluorene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Naphthalene	ND	0.09	ug/L	1	11/29/17	DD	SW8270D (SIM)
Phenanthrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	50		%	1	11/29/17	DD	30 - 130 %
% Nitrobenzene-d5	64		%	1	11/29/17	DD	30 - 130 %

Client ID: 1305171122-08

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Terphenyl-d14	66		%	1	11/29/17	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 06, 2017

Reviewed and Released by: Phyllis Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 06, 2017

FOR: Attn: Stefanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:11/22/1715:59Location Code:F&O-DASReceived by:DL11/22/1719:16

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

<u>Laboratory Data</u> SDG ID: GBZ46415

Phoenix ID: BZ46423

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver (10um)	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Arsenic (10um)	< 0.004	0.004	mg/L	1	11/28/17	MA	SW6010C/E200.7
Barium (10um)	0.016	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Cadmium (10um)	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chromium (10um)	0.004	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Mercury (10um)	< 0.0002	0.0002	mg/L	1	11/27/17	RS	SW7470A/E245.1-3.0
Sodium (10um)	107	1.0	mg/L	10	11/28/17	EK	SW6010C/E200.7
Lead (10um)	0.009	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Selenium (10um)	< 0.010	0.010	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chloride	98.6	3.0	mg/L	1	11/22/17	MI	SM4500CLE-97,-11
Mercury Digestion	Completed				11/27/17	W/W	SW7471B/E245.1-3.0
PCB Extraction	Completed				11/27/17	NT	SW3510C
Semi-Volatile Extraction	Completed				11/27/17	JJ/I	SW3520C
Total Metals Digestion	Completed				11/27/17	AG	
Polychlorinated Biphe	enyls						
PCB-1016	ND	0.50	ug/L	1	11/28/17	AW	SW8082A
PCB-1221	ND	0.50	ug/L	1	11/28/17	AW	SW8082A
PCB-1232	ND	0.50	ug/L	1	11/28/17	AW	SW8082A
PCB-1242	ND	0.50	ug/L	1	11/28/17	AW	SW8082A
PCB-1248	ND	0.50	ug/L	1	11/28/17	AW	SW8082A
PCB-1254	ND	0.50	ug/L	1	11/28/17	AW	SW8082A
PCB-1260	ND	0.50	ug/L	1	11/28/17	AW	SW8082A
PCB-1262	ND	0.50	ug/L	1	11/28/17	AW	SW8082A
PCB-1268	ND	0.50	ug/L	1	11/28/17	AW	SW8082A
QA/QC Surrogates							
% DCBP	86		%	1	11/28/17	AW	30 - 150 %
% TCMX	92		%	1	11/28/17	AW	30 - 150 %

Client ID: 1305171122-09

Volatiles1,1,1,2-TetrachloroethaneND1,1,1-TrichloroethaneND1,1,2-TetrachloroethaneND1,1,2-TrichloroethaneND1,1-DichloroethaneND1,1-DichloroethaneND1,1-DichloropropeneND1,2,3-TrichlorobenzeneND1,2,3-TrichlorobenzeneND1,2,4-TrichlorobenzeneND1,2,4-TrimethylbenzeneND1,2-Dibromo-3-chloropropaneND1,2-DibromoethaneND1,2-DichlorobenzeneND1,2-DichloropropaneND1,3-DichloropropaneND1,3-DichlorobenzeneND1,3-DichlorobenzeneND1,3-DichloropropaneND1,4-DichlorobenzeneND2,2-DichloropropaneND2,2-DichloropropaneND	1.0 1.0 0.50 1.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1	11/26/17 11/26/17 11/26/17 11/26/17 11/26/17	MH MH MH	SW8260 SW8260 SW8260
1,1,1-TrichloroethaneND1,1,2-TrichloroethaneND1,1,2-TrichloroethaneND1,1-DichloroethaneND1,1-DichloroetheneND1,1-DichloropropeneND1,2,3-TrichlorobenzeneND1,2,3-TrichloropropaneND1,2,4-TrichlorobenzeneND1,2,4-TrimethylbenzeneND1,2-Dibromo-3-chloropropaneND1,2-DibromoethaneND1,2-DichlorobenzeneND1,2-DichloroethaneND1,2-DichloropropaneND1,3-TrimethylbenzeneND1,3-DichlorobenzeneND1,3-DichlorobenzeneND1,3-DichlorobenzeneND1,4-DichlorobenzeneND	1.0 0.50 1.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1	11/26/17 11/26/17 11/26/17 11/26/17	MH MH	SW8260
1,1,2,2-TetrachloroethaneND1,1,2-TrichloroethaneND1,1-DichloroethaneND1,1-DichloroetheneND1,1-DichloropropeneND1,2,3-TrichlorobenzeneND1,2,3-TrichloropropaneND1,2,4-TrichlorobenzeneND1,2,4-TrimethylbenzeneND1,2-Dibromo-3-chloropropaneND1,2-DibromoethaneND1,2-DichlorobenzeneND1,2-DichloropropaneND1,2-DichloropropaneND1,3-TrimethylbenzeneND1,3-DichlorobenzeneND1,3-DichlorobenzeneND1,3-DichlorobenzeneND1,4-DichlorobenzeneND	0.50 1.0 1.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1	11/26/17 11/26/17 11/26/17	МН	
1,1,2-TrichloroethaneND1,1-DichloroethaneND1,1-DichloroetheneND1,1-DichloropropeneND1,2,3-TrichlorobenzeneND1,2,3-TrichloropropaneND1,2,4-TrichlorobenzeneND1,2,4-TrimethylbenzeneND1,2-Dibromo-3-chloropropaneND1,2-DibromoethaneND1,2-DichlorobenzeneND1,2-DichloroethaneND1,2-DichloropropaneND1,3-TrimethylbenzeneND1,3-DichlorobenzeneND1,3-DichloropropaneND1,3-DichlorobenzeneND1,4-DichlorobenzeneND	1.0 1.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L	1 1 1	11/26/17 11/26/17		SW8260
1,1,2-TrichloroethaneND1,1-DichloroethaneND1,1-DichloroetheneND1,1-DichloropropeneND1,2,3-TrichlorobenzeneND1,2,3-TrichloropropaneND1,2,4-TrichlorobenzeneND1,2,4-TrimethylbenzeneND1,2-Dibromo-3-chloropropaneND1,2-DibromoethaneND1,2-DichlorobenzeneND1,2-DichloroethaneND1,2-DichloropropaneND1,3-TrimethylbenzeneND1,3-DichlorobenzeneND1,3-DichloropropaneND1,3-DichlorobenzeneND1,4-DichlorobenzeneND	1.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L	1 1	11/26/17	МН	
1,1-DichloroethaneND1,1-DichloroetheneND1,1-DichloropropeneND1,2,3-TrichlorobenzeneND1,2,3-TrichloropropaneND1,2,4-TrichlorobenzeneND1,2,4-TrimethylbenzeneND1,2-Dibromo-3-chloropropaneND1,2-DibromoethaneND1,2-DichlorobenzeneND1,2-DichloroethaneND1,2-DichloropropaneND1,3-TrimethylbenzeneND1,3-DichlorobenzeneND1,3-DichloropropaneND1,3-DichloropropaneND1,4-DichlorobenzeneND	1.0 1.0 1.0 1.0	ug/L ug/L ug/L	1			SW8260
1,1-DichloropropeneND1,2,3-TrichlorobenzeneND1,2,3-TrichloropropaneND1,2,4-TrichlorobenzeneND1,2,4-TrimethylbenzeneND1,2-Dibromo-3-chloropropaneND1,2-DibromoethaneND1,2-DichlorobenzeneND1,2-DichloroethaneND1,2-DichloropropaneND1,3-TrimethylbenzeneND1,3-DichlorobenzeneND1,3-DichloropropaneND1,3-DichlorobenzeneND1,4-DichlorobenzeneND	1.0 1.0 1.0 1.0	ug/L ug/L			MH	SW8260
1,1-DichloropropeneND1,2,3-TrichlorobenzeneND1,2,3-TrichloropropaneND1,2,4-TrichlorobenzeneND1,2,4-TrimethylbenzeneND1,2-Dibromo-3-chloropropaneND1,2-DibromoethaneND1,2-DichlorobenzeneND1,2-DichloroethaneND1,2-DichloropropaneND1,3-TrimethylbenzeneND1,3-DichlorobenzeneND1,3-DichloropropaneND1,3-DichlorobenzeneND1,4-DichlorobenzeneND	1.0 1.0 1.0	ug/L	4	11/26/17	МН	SW8260
1,2,3-TrichlorobenzeneND1,2,3-TrichloropropaneND1,2,4-TrichlorobenzeneND1,2,4-TrimethylbenzeneND1,2-Dibromo-3-chloropropaneND1,2-DibromoethaneND1,2-DichlorobenzeneND1,2-DichloroethaneND1,2-DichloropropaneND1,3-TrimethylbenzeneND1,3-DichlorobenzeneND1,3-DichloropropaneND1,3-DichlorobenzeneND1,4-DichlorobenzeneND	1.0 1.0	ug/L	1	11/26/17	МН	SW8260
1,2,3-TrichloropropaneND1,2,4-TrichlorobenzeneND1,2,4-TrimethylbenzeneND1,2-Dibromo-3-chloropropaneND1,2-DibromoethaneND1,2-DichlorobenzeneND1,2-DichloroethaneND1,2-DichloropropaneND1,3-TrimethylbenzeneND1,3-DichlorobenzeneND1,3-DichloropropaneND1,3-DichlorobenzeneND1,4-DichlorobenzeneND	1.0	"	1	11/26/17	МН	SW8260
1,2,4-TrichlorobenzeneND1,2,4-TrimethylbenzeneND1,2-Dibromo-3-chloropropaneND1,2-DibromoethaneND1,2-DichlorobenzeneND1,2-DichloroethaneND1,2-DichloropropaneND1,3-TrimethylbenzeneND1,3-DichlorobenzeneND1,3-DichloropropaneND1,3-DichlorobenzeneND1,4-DichlorobenzeneND		ug/L	1	11/26/17	МН	SW8260
1,2,4-TrimethylbenzeneND1,2-Dibromo-3-chloropropaneND1,2-DibromoethaneND1,2-DichlorobenzeneND1,2-DichloroethaneND1,2-DichloropropaneND1,3,5-TrimethylbenzeneND1,3-DichlorobenzeneND1,3-DichloropropaneND1,3-DichlorobenzeneND1,4-DichlorobenzeneND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2-Dibromo-3-chloropropaneND1,2-DibromoethaneND1,2-DichlorobenzeneND1,2-DichloroethaneND1,2-DichloropropaneND1,3,5-TrimethylbenzeneND1,3-DichlorobenzeneND1,3-DichloropropaneND1,4-DichlorobenzeneND		ug/L	1	11/26/17	МН	SW8260
1,2-DibromoethaneND1,2-DichlorobenzeneND1,2-DichloroethaneND1,2-DichloropropaneND1,3,5-TrimethylbenzeneND1,3-DichlorobenzeneND1,3-DichloropropaneND1,4-DichlorobenzeneND	0.50	ug/L	1	11/26/17	МН	SW8260
1,2-DichlorobenzeneND1,2-DichloroethaneND1,2-DichloropropaneND1,3,5-TrimethylbenzeneND1,3-DichlorobenzeneND1,3-DichloropropaneND1,4-DichlorobenzeneND	0.25	ug/L	1	11/26/17	МН	SW8260
1,2-DichloroethaneND1,2-DichloropropaneND1,3,5-TrimethylbenzeneND1,3-DichlorobenzeneND1,3-DichloropropaneND1,4-DichlorobenzeneND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2-DichloropropaneND1,3,5-TrimethylbenzeneND1,3-DichlorobenzeneND1,3-DichloropropaneND1,4-DichlorobenzeneND	0.60	ug/L	1	11/26/17	МН	SW8260
1,3,5-TrimethylbenzeneND1,3-DichlorobenzeneND1,3-DichloropropaneND1,4-DichlorobenzeneND	1.0	ug/L	1	11/26/17	МН	SW8260
1,3-DichlorobenzeneND1,3-DichloropropaneND1,4-DichlorobenzeneND	1.0	ug/L	1	11/26/17	МН	SW8260
1,3-DichloropropaneND1,4-DichlorobenzeneND	1.0	ug/L	1	11/26/17	МН	SW8260
1,4-Dichlorobenzene ND	1.0	ug/L	1	11/26/17	МН	SW8260
	1.0	ug/L	1	11/26/17	МН	SW8260
	1.0	ug/L	1	11/26/17	МН	SW8260
2-Chlorotoluene ND	1.0	ug/L	1	11/26/17	МН	SW8260
2-Hexanone ND	5.0	ug/L	1	11/26/17	МН	SW8260
2-Isopropyltoluene ND	1.0	ug/L	1	11/26/17	МН	SW8260
4-Chlorotoluene ND	1.0	ug/L	1	11/26/17	МН	SW8260
4-Methyl-2-pentanone ND	5.0	ug/L	1	11/26/17	МН	SW8260
Acetone ND	25	ug/L	1	11/26/17	МН	SW8260
Acrylonitrile ND	2.5	ug/L	1	11/26/17	МН	SW8260
Benzene ND	0.70	ug/L	1	11/26/17	МН	SW8260
Bromobenzene ND	1.0	ug/L	1	11/26/17	МН	SW8260
Bromochloromethane ND	1.0	ug/L	1	11/26/17	МН	SW8260
Bromodichloromethane ND	0.50	ug/L	1	11/26/17	МН	SW8260
Bromoform ND	1.0	ug/L	1	11/26/17	МН	SW8260
Bromomethane ND	1.0	ug/L	1	11/26/17	МН	SW8260
Carbon Disulfide ND	5.0	ug/L	1	11/26/17	МН	SW8260
Carbon tetrachloride ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chlorobenzene ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloroethane ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloroform ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloromethane ND	1.0	ug/L	1	11/26/17	МН	SW8260
cis-1,2-Dichloroethene ND	1.0	ug/L	1	11/26/17	МН	SW8260
cis-1,3-Dichloropropene ND	0.40	ug/L	1	11/26/17	МН	SW8260
Dibromochloromethane ND	0.50	ug/L	1	11/26/17	МН	SW8260
Dibromomethane ND	1.0	ug/L	1	11/26/17	МН	SW8260
Dichlorodifluoromethane ND	1.0	ug/L	1	11/26/17	МН	SW8260
Ethylbenzene ND		ug/L				
Hexachlorobutadiene ND	1.0	~ M =	1	11/26/17	MH	SW8260
Isopropylbenzene ND	1.0 0.40	ug/L	1 1	11/26/17 11/26/17	MH MH	SW8260 SW8260

Client ID: 1305171122-09

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
m&p-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Methylene chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Naphthalene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
n-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
o-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Styrene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
tert-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Tetrachloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	11/26/17	MH	SW8260
Toluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Total Xylenes	ND	1.0	ug/L	1	11/26/17	MH	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Trichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Vinyl chloride	ND	1.0	ug/L	1	11/26/17	МН	SW8260
QA/QC Surrogates			-				
% 1,2-dichlorobenzene-d4	100		%	1	11/26/17	MH	70 - 130 %
% Bromofluorobenzene	94		%	1	11/26/17	MH	70 - 130 %
% Dibromofluoromethane	106		%	1	11/26/17	MH	70 - 130 %
% Toluene-d8	99		%	1	11/26/17	МН	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	0.33	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthene	0.10	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthylene	1.8	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Anthracene	0.86	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benz(a)anthracene	3.0	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(a)pyrene	4.3	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	4.6	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	3.6	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	3.1	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Chrysene	3.1	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	1.3	0.01	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluoranthene	4.3	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluorene	0.28	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	3.5	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Naphthalene	0.39	0.09	ug/L	1	11/29/17	DD	SW8270D (SIM)
Phenanthrene	1.0	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Pyrene	5.2	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	60		%	1	11/29/17	DD	30 - 130 %
% Nitrobenzene-d5	77		%	1	11/29/17	DD	30 - 130 %

Client ID: 1305171122-09

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Terphenyl-d14	37		%	1	11/29/17	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 06, 2017

Reviewed and Released by: Phyllis Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 06, 2017

FOR: Attn: Stefanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:11/22/1714:04Location Code:F&O-DASReceived by:DL11/22/1719:16

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

<u>Laboratory Data</u> SDG ID: GBZ46415

Phoenix ID: BZ46424

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver (10um)	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Arsenic (10um)	< 0.004	0.004	mg/L	1	11/28/17	MA	SW6010C/E200.7
Barium (10um)	0.015	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Cadmium (10um)	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chromium (10um)	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Mercury (10um)	< 0.0002	0.0002	mg/L	1	11/27/17	RS	SW7470A/E245.1-3.0
Sodium (10um)	30.5	0.1	mg/L	1	11/28/17	EK	SW6010C/E200.7
Lead (10um)	0.003	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Selenium (10um)	< 0.010	0.010	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chloride	57.2	3.0	mg/L	1	11/22/17	MI	SM4500CLE-97,-11
Mercury Digestion	Completed				11/27/17	W/W	SW7471B/E245.1-3.0
Extraction for Pest (2 Liter)	Completed				11/27/17	NT	SW3510C
Semi-Volatile Extraction	Completed				11/27/17	JJ/I	SW3520C
Total Metals Digestion	Completed				11/27/17	AG	
<u>Pesticides</u>							
4,4' -DDD	ND	0.047	ug/L	1	11/28/17	CW	SW8081B
4,4' -DDE	ND	0.047	ug/L	1	11/28/17	CW	SW8081B
4,4' -DDT	ND	0.047	ug/L	1	11/28/17	CW	SW8081B
a-BHC	ND	0.024	ug/L	1	11/28/17	CW	SW8081B
Alachlor	ND	0.070	ug/L	1	11/28/17	CW	SW8081B
Aldrin	ND	0.001	ug/L	1	11/28/17	CW	SW8081B
b-BHC	ND	0.005	ug/L	1	11/28/17	CW	SW8081B
Chlordane	ND	0.28	ug/L	1	11/28/17	CW	SW8081B
d-BHC	ND	0.024	ug/L	1	11/28/17	CW	SW8081B
Dieldrin	ND	0.001	ug/L	1	11/28/17	CW	SW8081B
Endosulfan I	ND	0.047	ug/L	1	11/28/17	CW	SW8081B
Endosulfan II	ND	0.047	ug/L	1	11/28/17	CW	SW8081B

Client ID: 1305171122-10

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Endosulfan Sulfate	ND	0.047	ug/L	1	11/28/17	CW	SW8081B
Endrin	ND	0.047	ug/L	1	11/28/17	CW	SW8081B
Endrin Aldehyde	ND	0.047	ug/L	1	11/28/17	CW	SW8081B
Endrin ketone	ND	0.047	ug/L	1	11/28/17	CW	SW8081B
g-BHC (Lindane)	ND	0.024	ug/L	1	11/28/17	CW	SW8081B
Heptachlor	ND	0.024	ug/L	1	11/28/17	CW	SW8081B
Heptachlor epoxide	ND	0.024	ug/L	1	11/28/17	CW	SW8081B
Methoxychlor	ND	0.094	ug/L	1	11/28/17	CW	SW8081B
Toxaphene	ND	0.94	ug/L	1	11/28/17	CW	SW8081B
QA/QC Surrogates							
%DCBP (Surrogate Rec)	52		%	1	11/28/17	CW	30 - 150 %
%TCMX (Surrogate Rec)	118		%	1	11/28/17	CW	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
1,2-Dibromoethane	ND	0.25	ug/L	1	11/26/17	MH	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	11/26/17	MH	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Acetone	ND	25	ug/L	1	11/26/17	MH	SW8260
Acrylonitrile	ND	2.5	ug/L	1	11/26/17	MH	SW8260
Benzene	ND	0.70	ug/L	1	11/26/17	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromochloromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
Bromoform	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromomethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	11/26/17	МН	SW8260

Client ID: 1305171122-10

Client ID: 1305171122-10	J						
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Dν	Reference
						Ву	
Chlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Chloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Chloroform	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Chloromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
Dibromomethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Ethylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	11/26/17	МН	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
m&p-Xylene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	1	11/26/17	МН	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Methylene chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Naphthalene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
n-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
o-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Styrene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
tert-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Tetrachloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	11/26/17	MH	SW8260
Toluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Total Xylenes	ND	1.0	ug/L	1	11/26/17	MH	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Trichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	103		%	1	11/26/17	MH	70 - 130 %
% Bromofluorobenzene	92		%	1	11/26/17	MH	70 - 130 %
% Dibromofluoromethane	103		%	1	11/26/17	MH	70 - 130 %
% Toluene-d8	101		%	1	11/26/17	MH	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthylene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)

Client ID: 1305171122-10

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Benzo(k)fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Chrysene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluorene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Naphthalene	ND	0.09	ug/L	1	11/29/17	DD	SW8270D (SIM)
Phenanthrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	61		%	1	11/29/17	DD	30 - 130 %
% Nitrobenzene-d5	79		%	1	11/29/17	DD	30 - 130 %
% Terphenyl-d14	69		%	1	11/29/17	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 06, 2017

Reviewed and Released by: Phyllis Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 06, 2017

FOR: Attn: Stefanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:11/22/1715:37Location Code:F&O-DASReceived by:DL11/22/1719:16

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ46415

Phoenix ID: BZ46425

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver (10um)	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Arsenic (10um)	< 0.004	0.004	mg/L	1	11/28/17	MA	SW6010C/E200.7
Barium (10um)	0.146	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Cadmium (10um)	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chromium (10um)	0.064	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Mercury (10um)	< 0.0002	0.0002	mg/L	1	11/27/17	RS	SW7470A/E245.1-3.0
Sodium (10um)	36.7	0.1	mg/L	1	11/28/17	EK	SW6010C/E200.7
Lead (10um)	0.054	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Selenium (10um)	< 0.010	0.010	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chloride	14.4	3.0	mg/L	1	11/22/17	MI	SM4500CLE-97,-11
Mercury Digestion	Completed				11/27/17	W/W	SW7471B/E245.1-3.0
Extraction for Pest (2 Liter)	Completed				11/27/17	NT	SW3510C
Semi-Volatile Extraction	Completed				11/27/17	JJ/I	SW3520C
Total Metals Digestion	Completed				11/27/17	AG	
<u>Pesticides</u>							
4,4' -DDD	ND	2.6	ug/L	50	11/28/17	CW	SW8081B
4,4' -DDE	0.78	0.26	ug/L	50	11/28/17	CW	SW8081B
4,4' -DDT	3.0	2.6	ug/L	50	11/28/17	CW	SW8081B
a-BHC	ND	0.13	ug/L	50	11/28/17	CW	SW8081B
Alachlor	ND	0.13	ug/L	50	11/28/17	CW	SW8081B
Aldrin	ND	0.13	ug/L	50	11/28/17	CW	SW8081B
b-BHC	ND	0.13	ug/L	50	11/28/17	CW	SW8081B
Chlordane	ND	15	ug/L	50	11/28/17	CW	SW8081B
d-BHC	ND	0.13	ug/L	50	11/28/17	CW	SW8081B
Dieldrin	ND	0.13	ug/L	50	11/28/17	CW	SW8081B
Endosulfan I	ND	2.6	ug/L	50	11/28/17	CW	SW8081B
Endosulfan II	ND	2.6	ug/L	50	11/28/17	CW	SW8081B

Client ID: 1305171122-	11						
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Endosulfan Sulfate	ND	2.6	ug/L	50	11/28/17	CW	SW8081B
Endrin	ND	0.13	ug/L	50	11/28/17	CW	SW8081B
Endrin Aldehyde	ND	0.13	ug/L	50	11/28/17	CW	SW8081B
Endrin ketone	ND	0.13	ug/L	50	11/28/17	CW	SW8081B
g-BHC (Lindane)	ND	0.13	ug/L	50	11/28/17	CW	SW8081B
Heptachlor	ND	0.13	ug/L	50	11/28/17	CW	SW8081B
Heptachlor epoxide	ND	0.13	ug/L	50	11/28/17	CW	SW8081B
Methoxychlor	ND	5.1	ug/L	50	11/28/17	CW	SW8081B
Toxaphene	ND	51	ug/L	50	11/28/17	CW	SW8081B
QA/QC Surrogates			• •				
%DCBP (Surrogate Rec)	Diluted Out		%	50	11/28/17	CW	30 - 150 %
%TCMX (Surrogate Rec)	Diluted Out		%	50	11/28/17	CW	30 - 150 %
70 TOWN (Guinogate Nee)	2		,,		,=5,	• • • • • • • • • • • • • • • • • • • •	.00 /0
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
1,2-Dibromoethane	ND	0.25	ug/L	1	11/26/17	МН	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	11/26/17	MH	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
	ND	5.0	ug/L	1	11/26/17	MH	SW8260
2-Hexanone	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
4-Chlorotoluene	ND	5.0		1	11/26/17	МН	SW8260
4-Methyl-2-pentanone			ug/L	•			SW8260
Acetone	ND	25 2.5	ug/L	1	11/26/17	MH	
Acrylonitrile	ND	2.5	ug/L	1	11/26/17	MH	SW8260
Benzene	ND	0.70	ug/L	1	11/26/17	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromochloromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
Bromoform	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromomethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260

Client ID: 1305171122-11

Client ID: 1305171122-1	1	RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Chlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Chloroform	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Chloromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
Dibromomethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Ethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	11/26/17	МН	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
m&p-Xylene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	1	11/26/17	МН	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Methylene chloride	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Naphthalene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
n-Butylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
o-Xylene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Styrene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
tert-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Tetrachloroethene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	11/26/17	MH	SW8260
Toluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Total Xylenes	ND	1.0	ug/L	1	11/26/17	МН	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	МН	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	11/26/17	МН	SW8260
Trichloroethene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
QA/QC Surrogates			<i>∞9,</i> =	·	, ,	••••	0110200
% 1,2-dichlorobenzene-d4	102		%	1	11/26/17	МН	70 - 130 %
% Bromofluorobenzene	80		%	1	11/26/17	МН	70 - 130 %
% Dibromofluoromethane	98		%	1	11/26/17	МН	70 - 130 %
% Toluene-d8	100		%	1	11/26/17	MH	70 - 130 %
	.00		,,	·	, = 5,		
Semivolatiles by SIM							
2-Methylnaphthalene	0.35	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthene	0.05	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthylene	2.7	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Anthracene	1.1	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benz(a)anthracene	1.3	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(a)pyrene	3.7	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	3.3	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	3.5	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)

Client ID: 1305171122-11

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Benzo(k)fluoranthene	3.3	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)	
Chrysene	1.5	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)	
Dibenz(a,h)anthracene	1.5	0.01	ug/L	1	11/29/17	DD	SW8270D (SIM)	
Fluoranthene	1.6	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)	
Fluorene	0.23	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)	
Indeno(1,2,3-cd)pyrene	3.4	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)	
Naphthalene	0.35	0.10	ug/L	1	11/29/17	DD	SW8270D (SIM)	
Phenanthrene	0.34	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)	
Pyrene	2.5	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)	
QA/QC Surrogates								
% 2-Fluorobiphenyl	46		%	1	11/29/17	DD	30 - 130 %	
% Nitrobenzene-d5	62		%	1	11/29/17	DD	30 - 130 %	
% Terphenyl-d14	<10		%	1	11/29/17	DD	30 - 130 %	3

^{3 =} This parameter exceeds laboratory specified limits.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Semi-Volatile Comment:

Poor surrogate recovery was observed for one acid and/or one base surrogate. The other surrogates associated with this sample were within QA/QC criteria. No significant bias suspected.

Pesticide Comment:

Due to the presence of large quantities of target pesticides in the sample, a dilution was required that caused an elevated RL. Not all requested criteria was achieved.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 06, 2017

Reviewed and Released by: Phyllis Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 06, 2017

FOR: Attn: Stefanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:11/22/1715:06Location Code:F&O-DASReceived by:DL11/22/1719:16

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ46415

Phoenix ID: BZ46426

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Arsenic	< 0.004	0.004	mg/L	1	11/28/17	MA	SW6010C/E200.7
Barium	0.007	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Cadmium	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chromium	< 0.001	0.001	mg/L	1	11/28/17	MA	SW6010C/E200.7
Mercury	< 0.0002	0.0002	mg/L	1	11/27/17	RS	SW7470/245.1
Sodium	84.0	1.0	mg/L	10	11/28/17	EK	SW6010C/E200.7
Lead	0.005	0.002	mg/L	1	11/28/17	MA	SW6010C/E200.7
Selenium	< 0.010	0.010	mg/L	1	11/28/17	MA	SW6010C/E200.7
Chloride	73.3	3.0	mg/L	1	11/22/17	MI	SM4500CLE-97,-11
Mercury Digestion	Completed				11/27/17	W/W	SW7470/245.1
Semi-Volatile Extraction	Completed				11/27/17	JJ/I	SW3520C
Total Metals Digestion	Completed				11/27/17	AG	
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
1,2-Dibromoethane	ND	0.25	ug/L	1	11/26/17	МН	SW8260

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	11/26/17	МН	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
I,3-Dichloropropane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
2-Hexanone	ND	5.0	ug/L	1	11/26/17	МН	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1-Methyl-2-pentanone	ND	5.0	ug/L	1	11/26/17	МН	SW8260
Acetone	ND	25	ug/L	1	11/26/17	МН	SW8260
Acrylonitrile	ND	2.5	ug/L	1	11/26/17	МН	SW8260
Benzene	ND	0.70	ug/L	1	11/26/17	МН	SW8260
Bromobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Bromochloromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
Bromoform	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromomethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Chlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Chloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Chloroform	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Chloromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L ug/L	1	11/26/17	MH	SW8260
	ND	0.40	ug/L ug/L	1	11/26/17	MH	SW8260
cis-1,3-Dichloropropene Dibromochloromethane	ND	0.40	ug/∟ ug/L	1	11/26/17	MH	SW8260
Dibromocnioromethane	ND	1.0	ug/∟ ug/L	1	11/26/17	MH	SW8260
	ND	1.0	=	1	11/26/17	MH	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	11/26/17		SW8260
Ethylbenzene			ug/L	1		MH	
Hexachlorobutadiene	ND	0.40	ug/L		11/26/17	MH	SW8260
sopropylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
n&p-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Methylene chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Naphthalene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
n-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
o-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
o-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Styrene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
ert-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Tetrachloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Гetrahydrofuran (ТНF)	ND	2.5	ug/L	1	11/26/17	MH	SW8260

Toluene			RL/					
Total Xylenes	Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
trans-1,2-Dichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 trans-1,3-Dichloropropene ND 0.40 ug/L 1 11/26/17 MH SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/L 1 11/26/17 MH SW8260 Trichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorotifluoroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH 70-130 % Bound Bound 1.0 0 0 1 11/26/17 MH 70-130 % Bound Bound 1.0 0.0 0 1 11/26/17 <td>Toluene</td> <td>ND</td> <td>1.0</td> <td>ug/L</td> <td>1</td> <td>11/26/17</td> <td>МН</td> <td>SW8260</td>	Toluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
trans-1,3-Dichloropropene ND 0.40 ug/L 1 11/26/17 MH SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/L 1 11/26/17 MH SW8260 Trichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorotifluoromethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH 70 - 130 % ACAPC Surroates V 1.2-dichlorobenzene-d4 103 % 1 11/26/17 MH 70 - 130 % %	Total Xylenes	ND	1.0	ug/L	1	11/26/17	MH	SW8260
trans-1,4-dichloro-2-butene ND 5.0 ug/L 1 11/26/17 MH SW8260 Trichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorotifluoroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorotifluoroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Oky Cargates Semicollorobenzene-d4 103 "S "S 1 11/26/17 MH 70 - 130 % % Bromofluorobenzene 80 "S "S 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane 104 "S "S 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM)	trans-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Trichloroethene ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorofturomethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorotifluoroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 CAPCE Surrogates % 1.2-dichlorobenzene-d4 103 % 1 11/26/17 MH 70 - 130 % % Bromofluorobenzene 80 % 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane 104 % 1 11/26/17 MH 70 - 130 % % Toluene-d8 100 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2 W 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2 Ug/L 1 11/29/17 DD SW8270D (SIM)	trans-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
Trichlorofluoromethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Trichlorotifluoroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane 103 % 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane 104 % % 1 11/26/17 MH 70 - 130 % % Toluene-d8 100 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM SIM V 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD	trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Trichlorotrifluoroethane ND 1.0 ug/L 1 11/26/17 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 QA/QC Surrogates Use 1,2-dichlorobenzene-d4 103 % 1 11/26/17 MH 70 - 130 % % Bromofluorobenzene 80 % 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane 104 % 1 11/26/17 MH 70 - 130 % % Toluene-d8 100 0.05 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2 Well William ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 </td <td>Trichloroethene</td> <td>ND</td> <td>1.0</td> <td>ug/L</td> <td>1</td> <td>11/26/17</td> <td>MH</td> <td>SW8260</td>	Trichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Vinyl chloride ND 1.0 ug/L 1 11/26/17 MH SW8260 CA/QC Surrogates % 1,2-dichlorobenzene-d4 103 % 1 11/26/17 MH 70-130 % % Bromofluorobenzene 80 % 1 11/26/17 MH 70-130 % % Dibromofluoromethane 104 % 1 11/26/17 MH 70-130 % Semivolatiles by SIM Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)phylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM)	Trichlorofluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Mayor Surrogates % 1,2-dichlorobenzene-d4 103 % 1 11/26/17 MH 70 - 130 % % Bromofluorobenzene 80 % 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane 104 % 1 11/26/17 MH 70 - 130 % % Toluene-d8 100 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM Semivolatiles by	Trichlorotrifluoroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
% 1,2-dichlorobenzene -d4 103 % 1 11/26/17 MH 70 - 130 % % Bromofluorobenzene 80 % 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane 104 % 1 11/26/17 MH 70 - 130 % % Toluene-d8 100 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17	Vinyl chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
% Bromofluorobenzene 80 % 1 11/26/17 MH 70 - 130 % % Dibromofluoromethane 104 % 1 11/26/17 MH 70 - 130 % % Toluene-d8 100 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)aptrane ND 0.05 ug/L 1 11/29/	QA/QC Surrogates							
% Dibromofluoromethane 104 % 1 11/26/17 MH 70 - 130 % % Toluene-d8 100 % 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)fuoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 </td <td>% 1,2-dichlorobenzene-d4</td> <td>103</td> <td></td> <td>%</td> <td>1</td> <td>11/26/17</td> <td>MH</td> <td>70 - 130 %</td>	% 1,2-dichlorobenzene-d4	103		%	1	11/26/17	MH	70 - 130 %
Semivolatiles by SIM 1 11/26/17 MH 70 - 130 % Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1	% Bromofluorobenzene	80		%	1	11/26/17	MH	70 - 130 %
Semivolatiles by SIM 2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benz(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND	% Dibromofluoromethane	104		%	1	11/26/17	MH	70 - 130 %
2-Methylnaphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benz(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 <td< td=""><td>% Toluene-d8</td><td>100</td><td></td><td>%</td><td>1</td><td>11/26/17</td><td>МН</td><td>70 - 130 %</td></td<>	% Toluene-d8	100		%	1	11/26/17	МН	70 - 130 %
Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benz(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1	Semivolatiles by SIM							
Acenaphthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benz(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1	2-Methylnaphthalene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benz(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1	• •	ND	0.05		1	11/29/17	DD	SW8270D (SIM)
Anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benz(a)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pilorentalthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Rodering ND 0.05 ug/L 1 <td< td=""><td>-</td><td>ND</td><td>0.05</td><td>ug/L</td><td>1</td><td>11/29/17</td><td>DD</td><td>SW8270D (SIM)</td></td<>	-	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(a)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Dibenz(a,h)anthracene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Piluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 </td <td>Anthracene</td> <td>ND</td> <td>0.05</td> <td>ug/L</td> <td>1</td> <td>11/29/17</td> <td>DD</td> <td>SW8270D (SIM)</td>	Anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Dibenz(a,h)anthracene ND 0.01 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/	Benz(a)anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Dibenz(a,h)anthracene ND 0.01 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/	Benzo(a)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(ghi)perylene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Benzo(k)fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Dibenz(a,h)anthracene ND 0.01 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.09 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates 9 1 11/29/17 DD 30 - 1		ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Chrysene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Dibenz(a,h)anthracene ND 0.01 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.09 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates 80 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 80 % 1 11/29/17 DD 30 - 130 % <td></td> <td>ND</td> <td>0.05</td> <td>ug/L</td> <td>1</td> <td>11/29/17</td> <td>DD</td> <td>SW8270D (SIM)</td>		ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene ND 0.01 ug/L 1 11/29/17 DD SW8270D (SIM) Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.09 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates V 2-Fluorobiphenyl 62 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 80 % 1 11/29/17 DD 30 - 130 %	Benzo(k)fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluoranthene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.09 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates V 2-Fluorobiphenyl 62 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 80 % 1 11/29/17 DD 30 - 130 %	Chrysene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluorene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.09 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates S % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 80 % 1 11/29/17 DD 30 - 130 %	Dibenz(a,h)anthracene	ND	0.01	ug/L	1	11/29/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Naphthalene ND 0.09 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates 80 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 80 % 1 11/29/17 DD 30 - 130 %	Fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Naphthalene ND 0.09 ug/L 1 11/29/17 DD SW8270D (SIM) Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates <	Fluorene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Phenanthrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates Surrogate	Indeno(1,2,3-cd)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Pyrene ND 0.05 ug/L 1 11/29/17 DD SW8270D (SIM) QA/QC Surrogates 80 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 80 % 1 11/29/17 DD 30 - 130 %	Naphthalene	ND	0.09	ug/L	1	11/29/17	DD	SW8270D (SIM)
QA/QC Surrogates % 2-Fluorobiphenyl 62 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 80 % 1 11/29/17 DD 30 - 130 %	•	ND	0.05		1	11/29/17	DD	
QA/QC Surrogates % 2-Fluorobiphenyl 62 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 80 % 1 11/29/17 DD 30 - 130 %	Pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
% 2-Fluorobiphenyl 62 % 1 11/29/17 DD 30 - 130 % % Nitrobenzene-d5 80 % 1 11/29/17 DD 30 - 130 %								
% Nitrobenzene-d5 80 % 1 11/29/17 DD 30 - 130 %		62		%	1	11/29/17	DD	30 - 130 %
% Terphenyl-d14 75 % 1 11/29/17 DD 30 - 130 %	• •	80		%	1	11/29/17	DD	30 - 130 %
70 TOTPHOLIST ATT DD 00 100 70	% Terphenyl-d14	75		%	1	11/29/17	DD	30 - 130 %

Client ID: 1305171122-12

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 06, 2017

Reviewed and Released by: Phyllis Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 06, 2017

FOR: Attn: Stefanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:11/22/1716:41Location Code:F&O-DASReceived by:DL11/22/1719:16

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ46415

Phoenix ID: BZ46427

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver (10um)	< 0.001	0.001	mg/L	1	11/29/17	MA	SW6010C/E200.7	
Arsenic (10um)	< 0.004	0.004	mg/L	1	11/29/17	MA	SW6010C/E200.7	
Barium (10um)	< 0.002	0.002	mg/L	1	11/29/17	MA	SW6010C/E200.7	
Cadmium (10um)	< 0.001	0.001	mg/L	1	11/29/17	MA	SW6010C/E200.7	
Chromium (10um)	< 0.001	0.001	mg/L	1	11/29/17	MA	SW6010C/E200.7	
Mercury (10um)	< 0.0002	0.0002	mg/L	1	11/27/17	RS	SW7470A/E245.1-3.0	
Sodium (10um)	11.4	0.1	mg/L	1	11/29/17	EK	SW6010C/E200.7	В
Lead (10um)	0.004	0.002	mg/L	1	11/29/17	MA	SW6010C/E200.7	
Selenium (10um)	< 0.010	0.010	mg/L	1	11/29/17	MA	SW6010C/E200.7	
Chloride	41.1	3.0	mg/L	1	11/22/17	MI	SM4500CLE-97,-11	
Mercury Digestion	Completed				11/27/17	W/W	SW7471B/E245.1-3.0	
Extraction for Pest (2 Liter)	Completed				11/27/17	NT	SW3510C	
Semi-Volatile Extraction	Completed				11/27/17	JJ/I	SW3520C	
Total Metals Digestion	Completed				11/28/17	AG		
<u>Pesticides</u>								
4,4' -DDD	ND	0.051	ug/L	1	11/28/17	CW	SW8081B	
4,4' -DDE	ND	0.051	ug/L	1	11/28/17	CW	SW8081B	
4,4' -DDT	ND	0.051	ug/L	1	11/28/17	CW	SW8081B	
a-BHC	ND	0.025	ug/L	1	11/28/17	CW	SW8081B	
Alachlor	ND	0.076	ug/L	1	11/28/17	CW	SW8081B	
Aldrin	ND	0.050	ug/L	1	11/28/17	CW	SW8081B	
b-BHC	ND	0.005	ug/L	1	11/28/17	CW	SW8081B	
Chlordane	ND	0.30	ug/L	1	11/28/17	CW	SW8081B	
d-BHC	ND	0.025	ug/L	1	11/28/17	CW	SW8081B	
Dieldrin	ND	0.002	ug/L	1	11/28/17	CW	SW8081B	
Endosulfan I	ND	0.051	ug/L	1	11/28/17	CW	SW8081B	
Endosulfan II	ND	0.051	ug/L	1	11/28/17	CW	SW8081B	

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Endosulfan Sulfate	ND	0.051	ug/L	1	11/28/17	CW	SW8081B
Endrin	ND	0.051	ug/L	1	11/28/17	CW	SW8081B
Endrin Aldehyde	ND	0.051	ug/L	1	11/28/17	CW	SW8081B
Endrin ketone	ND	0.051	ug/L	1	11/28/17	CW	SW8081B
g-BHC (Lindane)	ND	0.025	ug/L	1	11/28/17	CW	SW8081B
Heptachlor	ND	0.025	ug/L	1	11/28/17	CW	SW8081B
Heptachlor epoxide	ND	0.025	ug/L	1	11/28/17	CW	SW8081B
Methoxychlor	ND	0.10	ug/L	1	11/28/17	CW	SW8081B
Toxaphene	ND	1.0	ug/L	1	11/28/17	CW	SW8081B
QA/QC Surrogates							
%DCBP (Surrogate Rec)	114		%	1	11/28/17	CW	30 - 150 %
%TCMX (Surrogate Rec)	98		%	1	11/28/17	CW	30 - 150 %
<u>Volatiles</u>							011/0000
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
1,2-Dibromoethane	ND	0.25	ug/L	1	11/26/17	MH	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	11/26/17	MH	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Acetone	ND	25	ug/L	1	11/26/17	MH	SW8260
Acrylonitrile	ND	2.5	ug/L	1	11/26/17	MH	SW8260
Benzene	ND	0.70	ug/L	1	11/26/17	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromochloromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
Bromoform	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromomethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	11/26/17	МН	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	11/26/17	МН	SW8260

Client ID: 1305171122-13

Client ID: 1305171122-1	3	RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Chlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Chloroform	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Chloromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
Dibromomethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Ethylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	11/26/17	МН	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
m&p-Xylene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	1	11/26/17	МН	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Methylene chloride	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Naphthalene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
n-Butylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
o-Xylene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Styrene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
tert-Butylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Tetrachloroethene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	11/26/17	МН	SW8260
Toluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Total Xylenes	ND	1.0	ug/L	1	11/26/17	МН	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	МН	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	11/26/17	МН	SW8260
Trichloroethene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Vinyl chloride	ND	1.0	ug/L	1	11/26/17	МН	SW8260
QA/QC Surrogates			<i>∞9,</i> =	·	, = 0,		00200
% 1,2-dichlorobenzene-d4	101		%	1	11/26/17	МН	70 - 130 %
% Bromofluorobenzene	93		%	1	11/26/17	МН	70 - 130 %
% Dibromofluoromethane	104		%	1	11/26/17	МН	70 - 130 %
% Toluene-d8	102		%	1	11/26/17	МН	70 - 130 %
70 Tolderie do			,,	·	, = 6,		70 100 /0
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthylene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)

Client ID: 1305171122-13

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Benzo(k)fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Chrysene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluorene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Naphthalene	ND	0.10	ug/L	1	11/29/17	DD	SW8270D (SIM)
Phenanthrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	57		%	1	11/29/17	DD	30 - 130 %
% Nitrobenzene-d5	72		%	1	11/29/17	DD	30 - 130 %
% Terphenyl-d14	70		%	1	11/29/17	DD	30 - 130 %

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 06, 2017

Reviewed and Released by: Phyllis Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 06, 2017

FOR: Attn: Stefanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:11/22/1716:06Location Code:F&O-DASReceived by:DL11/22/1719:16

Rush Request: Standard Analyzed by: see "By" below

RI/

P.O.#: 20160476.A20

<u>Laboratory Data</u> SDG ID: GBZ46415

Phoenix ID: BZ46428

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver	< 0.001	0.001	mg/L	1	11/29/17	MA	SW6010C/E200.7	_
Arsenic	< 0.004	0.004	mg/L	1	11/29/17	MA	SW6010C/E200.7	
Barium	0.010	0.002	mg/L	1	11/29/17	MA	SW6010C/E200.7	
Cadmium	< 0.001	0.001	mg/L	1	11/29/17	MA	SW6010C/E200.7	
Chromium	< 0.001	0.001	mg/L	1	11/29/17	MA	SW6010C/E200.7	
Mercury	< 0.0002	0.0002	mg/L	1	11/27/17	RS	SW7470/245.1	
Sodium	75.2	1.0	mg/L	10	11/29/17	EK	SW6010C/E200.7	В
Lead	< 0.002	0.002	mg/L	1	11/29/17	MA	SW6010C/E200.7	
Selenium	< 0.010	0.010	mg/L	1	11/29/17	MA	SW6010C/E200.7	
Chloride	91.0	3.0	mg/L	1	11/22/17	MI	SM4500CLE-97,-11	
Mercury Digestion	Completed				11/27/17	W/W	SW7470/245.1	
PCB Extraction	Completed				11/27/17	NT	SW3510C	
Semi-Volatile Extraction	Completed				11/27/17	JJ/I	SW3520C	
Total Metals Digestion	Completed				11/28/17	AG		
Polychlorinated Biph	<u>ienyls</u>							
PCB-1016	ND	0.47	ug/L	1	11/28/17	AW	SW8082A	
PCB-1221	ND	0.47	ug/L	1	11/28/17	AW	SW8082A	
PCB-1232	ND	0.47	ug/L	1	11/28/17	AW	SW8082A	
PCB-1242	ND	0.47	ug/L	1	11/28/17	AW	SW8082A	
PCB-1248	ND	0.47	ug/L	1	11/28/17	AW	SW8082A	
PCB-1254	ND	0.47	ug/L	1	11/28/17	AW	SW8082A	
PCB-1260	ND	0.47	ug/L	1	11/28/17	AW	SW8082A	
PCB-1262	ND	0.47	ug/L	1	11/28/17	AW	SW8082A	
PCB-1268	ND	0.47	ug/L	1	11/28/17	AW	SW8082A	
QA/QC Surrogates								
% DCBP	98		%	1	11/28/17	AW	30 - 150 %	
% TCMX	121		%	1	11/28/17	AW	30 - 150 %	

Client ID: 1305171122-14

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
1,2-Dibromoethane	ND	0.25	ug/L	1	11/26/17	МН	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	11/26/17	МН	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
2-Hexanone	ND	5.0	ug/L	1	11/26/17	МН	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	11/26/17	МН	SW8260
Acetone	ND	25	ug/L	1	11/26/17	МН	SW8260
Acrylonitrile	ND	2.5	ug/L	1	11/26/17	MH	SW8260
Benzene	ND	0.70	ug/L	1	11/26/17	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromochloromethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
Bromoform	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromomethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Chlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Chloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Chloroform	ND	1.0	ug/L	1	11/26/17	MH	SW8260
	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Chloromethane	ND	1.0		1	11/26/17	MH	SW8260
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	ND	0.40	ug/L ug/L	1	11/26/17	МН	SW8260
				_			
Dibromochloromethane	ND ND	0.50 1.0	ug/L	1	11/26/17 11/26/17	MH MH	SW8260 SW8260
Dibromomethane Dishlerediffueremethane			ug/L	1			
Dichlorodifluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Ethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

Client ID: 1305171122-14

Doromotor	Dagult	RL/	l leite	Dilution	Data/Time	D	Deference
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
m&p-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Methylene chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Naphthalene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
n-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
o-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Styrene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
tert-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Tetrachloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	11/26/17	MH	SW8260
Toluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Total Xylenes	ND	1.0	ug/L	1	11/26/17	MH	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Trichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	102		%	1	11/26/17	MH	70 - 130 %
% Bromofluorobenzene	78		%	1	11/26/17	MH	70 - 130 %
% Dibromofluoromethane	109		%	1	11/26/17	MH	70 - 130 %
% Toluene-d8	102		%	1	11/26/17	МН	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthylene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Chrysene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluorene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Naphthalene	ND	0.09	ug/L	1	11/29/17	DD	SW8270D (SIM)
Phenanthrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
QA/QC Surrogates			5				· ,
% 2-Fluorobiphenyl	52		%	1	11/29/17	DD	30 - 130 %
% Nitrobenzene-d5	66		%	1	11/29/17	DD	30 - 130 %

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

Client ID: 1305171122-14

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
% Terphenyl-d14	28		%	1	11/29/17	DD	30 - 130 %	3

^{3 =} This parameter exceeds laboratory specified limits.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Semi-Volatile Comment:

Poor surrogate recovery was observed for one acid and/or one base surrogate. The other surrogates associated with this sample were within QA/QC criteria. No significant bias suspected.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 06, 2017

Reviewed and Released by: Phyllis Shiller, Laboratory Director

B = Present in blank, no bias suspected.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 06, 2017

FOR: Attn: Stefanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:11/22/1717:18Location Code:F&O-DASReceived by:DL11/22/1719:16

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20160476.A20

Laboratory Data SDG ID: GBZ46415

Phoenix ID: BZ46429

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

Client ID: 1305171122-16

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver (10um)	< 0.001	0.001	mg/L	1	11/29/17	MA	SW6010C/E200.7	_
Arsenic (10um)	< 0.004	0.004	mg/L	1	11/29/17	MA	SW6010C/E200.7	
Barium (10um)	0.072	0.002	mg/L	1	11/29/17	MA	SW6010C/E200.7	
Cadmium (10um)	< 0.001	0.001	mg/L	1	11/29/17	MA	SW6010C/E200.7	
Chromium (10um)	< 0.001	0.001	mg/L	1	11/29/17	MA	SW6010C/E200.7	
Mercury (10um)	< 0.0002	0.0002	mg/L	1	11/27/17	RS	SW7470A/E245.1-3.0	
Sodium (10um)	169	10	mg/L	100	11/29/17	EK	SW6010C/E200.7	В
Lead (10um)	< 0.002	0.002	mg/L	1	11/29/17	MA	SW6010C/E200.7	
Selenium (10um)	< 0.010	0.010	mg/L	1	11/29/17	MA	SW6010C/E200.7	
Chloride	268	6.0	mg/L	2	11/22/17	MI	SM4500CLE-97,-11	
Mercury Digestion	Completed				11/27/17	W/W	SW7471B/E245.1-3.0	
Semi-Volatile Extraction	Completed				11/27/17	JJ/I	SW3520C	
Total Metals Digestion	Completed				11/28/17	AG		
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260	
1,1,1-Trichloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260	
1,1,2-Trichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260	
1,1-Dichloroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260	
1,1-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260	
1,1-Dichloropropene	ND	1.0	ug/L	1	11/26/17	MH	SW8260	
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260	
1,2,3-Trichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260	
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260	
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260	
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	11/26/17	MH	SW8260	
1,2-Dibromoethane	ND	0.25	ug/L	1	11/26/17	MH	SW8260	

Client ID: 1305171122-16

Client ID: 1305171122-1	16						
		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	11/26/17	МН	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Acetone	ND	25	ug/L	1	11/26/17	MH	SW8260
Acrylonitrile	ND	2.5	ug/L	1	11/26/17	MH	SW8260
Benzene	ND	0.70	ug/L	1	11/26/17	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromochloromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	11/26/17	МН	SW8260
Bromoform	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Bromomethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	11/26/17	МН	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chlorobenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloroethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloroform	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Chloromethane	ND	1.0	ug/L	1	11/26/17	МН	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	МН	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	11/26/17	MH	SW8260
Dibromomethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Ethylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
m&p-Xylene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Methylene chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Naphthalene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
n-Butylbenzene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
o-Xylene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Styrene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
tert-Butylbenzene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Tetrachloroethene	ND	1.0	ug/L	1	11/26/17	МН	SW8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	11/26/17	МН	SW8260
•							

Client ID: 1305171122-16

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Toluene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Total Xylenes	ND	1.0	ug/L	1	11/26/17	MH	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	11/26/17	MH	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	11/26/17	MH	SW8260
Trichloroethene	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	11/26/17	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	11/26/17	MH	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	104		%	1	11/26/17	MH	70 - 130 %
% Bromofluorobenzene	93		%	1	11/26/17	MH	70 - 130 %
% Dibromofluoromethane	104		%	1	11/26/17	MH	70 - 130 %
% Toluene-d8	102		%	1	11/26/17	МН	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Acenaphthylene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Chrysene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluoranthene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Fluorene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Naphthalene	ND	0.09	ug/L	1	11/29/17	DD	SW8270D (SIM)
Phenanthrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
Pyrene	ND	0.05	ug/L	1	11/29/17	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	61		%	1	11/29/17	DD	30 - 130 %
% Nitrobenzene-d5	80		%	1	11/29/17	DD	30 - 130 %
% Terphenyl-d14	71		%	1	11/29/17	DD	30 - 130 %

Project ID: CT DOT HIGGANUM MAINTENANCE/REPAIR

Client ID: 1305171122-16

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

December 06, 2017

Reviewed and Released by: Phyllis Shiller, Laboratory Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

December 06, 2017

QA/QC Data

SDG I.D.: GBZ46415

Parameter	Blank	Blk RI	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
	OC Com	alo No. F	7715174	(D74441	۲)								
QA/QC Batch 410761 (mg/L), Mercury - Water			<0.0002		NC	87.9			94.2			80 - 120	20
Comment:	DILL	0.0002	<0.0002	<0.0002	NC	07.7			74.2			00 - 120	20
Additional Mercury criteria: LCS	accentanc	e range f	or waters	is 20-120°	% and fo	nr snils i	s 70 ₋ 130 ⁰	% MS a	ccentan	ce range	is 75 ₋ 1	25%	
,	•	J							•	J			14 422
QA/QC Batch 410850 (mg/L), BZ46423, BZ46424, BZ46425			5240243	(BZ4041	0, BZ4	0417, [3240416	5, DZ40	419, D.	246420	DZ404	421, BZ ²	10422,
ICP Metals - Aqueous	22.0.2	٠,											
Arsenic	BRL	0.004	< 0.004	< 0.004	NC	97.2			99.6			75 - 125	20
Barium	BRL	0.004	0.020	0.020	0	100			102			75 - 125 75 - 125	20
Cadmium	BRL	0.001	<0.001	< 0.001	NC	97.3			97.4			75 - 125	20
Chromium	BRL	0.001	0.003	0.003	NC	98.6			101			75 - 125	20
Lead	BRL	0.002	0.017	0.017	0	97.3			97.7			75 - 125	20
Selenium	BRL	0.010	<0.010	< 0.010	NC	93.3			93.6			75 - 125	20
Silver	BRL	0.001	< 0.001	< 0.001	NC	95.4			97.1			75 - 125	20
Sodium	BRL	0.10	3.05	3.05	0	104			109			75 - 125	20
QA/QC Batch 410983 (mg/L),	QC Samı	ole No: E	3Z46334	(BZ4642	7, BZ4	6428, E	3Z46429	9)					
ICP Metals - Aqueous	•			•				•					
Arsenic	BRL	0.004	0.005	0.005	NC	94.9			99.0			75 - 125	20
Barium	BRL	0.002	0.043	0.042	2.40	97.9			98.3			75 - 125	20
Cadmium	BRL	0.001	< 0.001	< 0.001	NC	96.7			95.5			75 - 125	20
Chromium	BRL	0.001	< 0.001	< 0.001	NC	96.5			96.8			75 - 125	20
Lead	BRL	0.002	< 0.002	< 0.002	NC	96.7			96.9			75 - 125	20
Selenium	BRL	0.010	< 0.010	< 0.010	NC	92.5			94.8			75 - 125	20
Silver	BRL	0.001	< 0.001	< 0.001	NC	89.8			92.2			75 - 125	20
Sodium	0.11	0.10	24.5	24.0	2.10	107			NC			75 - 125	20
QA/QC Batch 410763 (mg/L), BZ46424, BZ46425, BZ46426					7, BZ4	6418, E	3Z46419	9, BZ46	420, B	Z46421	BZ46	422, BZ4	16423,
Mercury - Water			<0.0002	•	NC	95.4			94.4			80 - 120	20
Comment:													
Additional Mercury criteria: LCS	acceptanc	e range f	or waters	is 80-120 ⁹	% and fo	or soils is	s 70-1309	%. MS a	cceptan	ce range	is 75-1	25%.	

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

December 06, 2017

QA/QC Data

SDG I.D.: GBZ46415

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 410728 (mg/L),	QC Samp	le No:	BZ45367	(BZ464 ⁻	16)								
Chloride	BRL	3.0	50.3	50.4	0.20	101			106			90 - 110	20
QA/QC Batch 410729 (mg/L), BZ46424, BZ46425, BZ46426				•	17, BZ4	6418, 1	BZ46419), BZ46	420, B	Z46421	BZ464	122, BZ	46423,
Chloride	BRL	3.0	8.5	8.5	NC	102			103			90 - 110	20

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

December 06, 2017

QA/QC Data

2A/QC Data	SDG I.D.: GBZ46415

Parameter	Blank	BIk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 410834 (ug/L)		le No: BZ46249 (B	Z46416, BZ46417, B	Z46418	, BZ464	119, BZ	46420,	BZ464	21, BZ4	6422,
BZ46423, BZ46424, BZ4642	•									
Semivolatiles by SIM -	water									
2-Methylnaphthalene	ND	0.05	55	59	7.0				30 - 130	20
Acenaphthene	ND	0.05	77	78	1.3				30 - 130	20
Acenaphthylene	ND	0.04	87	86	1.2				30 - 130	20
Anthracene	ND	0.02	99	97	2.0				30 - 130	20
Benz(a)anthracene	ND	0.02	92	90	2.2				30 - 130	20
Benzo(a)pyrene	ND	0.02	100	94	6.2				30 - 130	20
Benzo(b)fluoranthene	ND	0.02	99	102	3.0				30 - 130	20
Benzo(ghi)perylene	ND	0.02	89	77	14.5				30 - 130	20
Benzo(k)fluoranthene	ND	0.02	104	99	4.9				30 - 130	20
Chrysene	ND	0.02	82	81	1.2				30 - 130	20
Dibenz(a,h)anthracene	ND	0.01	108	94	13.9				30 - 130	20
Fluoranthene	ND	0.04	97	95	2.1				30 - 130	20
Fluorene	ND	0.05	87	85	2.3				30 - 130	20
Indeno(1,2,3-cd)pyrene	ND	0.02	100	88	12.8				30 - 130	20
Naphthalene	ND	0.05	43	48	11.0				30 - 130	20
Phenanthrene	ND	0.05	83	83	0.0				30 - 130	20
Pyrene	ND	0.02	101	98	3.0				30 - 130	20
% 2-Fluorobiphenyl	69	%	65	71	8.8				30 - 130	20
% Nitrobenzene-d5	69	%	46	48	4.3				30 - 130	20
% Terphenyl-d14	106	%	100	96	4.1				30 - 130	20
Comment:										
A LCS and LCS Duplicate wer	re performed	instead of a matrix sp	oike and matrix spike du	ıplicate.						
Additional 8270 criteria:20% o acceptance range for aqueous				g as reco	overy is a	at least 1	10%. (Ac	cid surro	gates	

QA/QC Batch 410853 (ug/L), QC Sample No: BZ46276 (BZ46421, BZ46424, BZ46425, BZ46427)

Pesticides - Water

i colloides Water							
4,4' -DDD	ND	0.003	104	98	5.9	40 - 140	20
4,4' -DDE	ND	0.003	113	103	9.3	40 - 140	20
4,4' -DDT	ND	0.003	104	101	2.9	40 - 140	20
a-BHC	ND	0.002	102	98	4.0	40 - 140	20
Alachlor	ND	0.005	NA	NA	NC	40 - 140	20
Aldrin	ND	0.002	88	82	7.1	40 - 140	20
b-BHC	ND	0.002	131	122	7.1	40 - 140	20
Chlordane	ND	0.050	104	96	8.0	40 - 140	20
d-BHC	ND	0.005	119	110	7.9	40 - 140	20
Dieldrin	ND	0.002	104	95	9.0	40 - 140	20
Endosulfan I	ND	0.005	100	96	4.1	40 - 140	20
Endosulfan II	ND	0.005	107	102	4.8	40 - 140	20
Endosulfan sulfate	ND	0.005	117	109	7.1	40 - 140	20

QA/QC Data

SDG I.D.: GBZ46415

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Endrin	ND	0.005	98	93	5.2				40 - 140	20
Endrin aldehyde	ND	0.005	116	107	8.1				40 - 140	20
Endrin ketone	ND	0.005	110	105	4.7				40 - 140	20
g-BHC	ND	0.002	99	95	4.1				40 - 140	20
Heptachlor	ND	0.005	100	89	11.6				40 - 140	20
Heptachlor epoxide	ND	0.005	103	97	6.0				40 - 140	20
Methoxychlor	ND	0.005	113	114	0.9				40 - 140	20
Toxaphene	ND	0.20	NA	NA	NC				40 - 140	20
% DCBP	90	%	109	104	4.7				30 - 150	20
% TCMX	80	%	101	98	3.0				30 - 150	20
Comment:										

A LCS and LCS duplicate were performed instead of a MS and MSD. Alpha and gamma chlordane were spiked and analyzed instead of technical chlordane. Gamma chlordane recovery is reported as chlordane in the LCS and LCSD

QA/QC Batch 410854 (ug/L), QC Sample No: BZ46276 (BZ46421, BZ46422, BZ46423, BZ46428)

Polychlorinated Biphen	yls - Wat	<u>ter</u>					
PCB-1016	ND	0.050	115	95	19.0	40 - 140	20
PCB-1221	ND	0.050				40 - 140	20
PCB-1232	ND	0.050				40 - 140	20
PCB-1242	ND	0.050				40 - 140	20
PCB-1248	ND	0.050				40 - 140	20
PCB-1254	ND	0.050				40 - 140	20
PCB-1260	ND	0.050	132	114	14.6	40 - 140	20
PCB-1262	ND	0.050				40 - 140	20
PCB-1268	ND	0.050				40 - 140	20
% DCBP (Surrogate Rec)	87	%	135	113	17.7	30 - 150	20
% TCMX (Surrogate Rec)	78	%	116	98	16.8	30 - 150	20
Comment:							

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

QA/QC Batch 410881 (ug/L), QC Sample No: BZ46415 (BZ46415, BZ46416, BZ46417, BZ46418, BZ46419, BZ46420, BZ46421, BZ46422, BZ46423, BZ46424, BZ46425, BZ46426, BZ46427, BZ46428, BZ46429)

DZ40422, DZ40423, DZ40424	, DZ404Z	J, DZ40420	, DZ40427, DZ40420, DZ	_4042	-7)			
<u> Volatiles - Water</u>								
1,1,1,2-Tetrachloroethane	ND	1.0	10	09	106	2.8	70 - 13	0 30
1,1,1-Trichloroethane	ND	1.0	10	09	106	2.8	70 - 13	0 30
1,1,2,2-Tetrachloroethane	ND	0.50	10	05	104	1.0	70 - 13	0 30
1,1,2-Trichloroethane	ND	1.0	10	02	103	1.0	70 - 13	0 30
1,1-Dichloroethane	ND	1.0	10	06	101	4.8	70 - 13	0 30
1,1-Dichloroethene	ND	1.0	10	06	100	5.8	70 - 13	0 30
1,1-Dichloropropene	ND	1.0	10	80	103	4.7	70 - 13	0 30
1,2,3-Trichlorobenzene	ND	1.0	9	7	98	1.0	70 - 13	0 30
1,2,3-Trichloropropane	ND	1.0	9	8	92	6.3	70 - 13	0 30
1,2,4-Trichlorobenzene	ND	1.0	9	96	94	2.1	70 - 13	0 30
1,2,4-Trimethylbenzene	ND	1.0	9	9	92	7.3	70 - 13	0 30
1,2-Dibromo-3-chloropropane	ND	1.0	10	05	107	1.9	70 - 13	0 30
1,2-Dibromoethane	ND	1.0	10	03	101	2.0	70 - 13	0 30
1,2-Dichlorobenzene	ND	1.0	9	9	97	2.0	70 - 13	0 30
1,2-Dichloroethane	ND	1.0	10	04	98	5.9	70 - 13	0 30
1,2-Dichloropropane	ND	1.0	10	00	96	4.1	70 - 13	0 30
1,3,5-Trimethylbenzene	ND	1.0	10	00	97	3.0	70 - 13	0 30
1,3-Dichlorobenzene	ND	1.0	9	9	97	2.0	70 - 13	0 30
1,3-Dichloropropane	ND	1.0	10	00	100	0.0	70 - 13	0 30
1,4-Dichlorobenzene	ND	1.0	9	8	95	3.1	70 - 13	0 30
2,2-Dichloropropane	ND	1.0	11	12	105	6.5	70 - 13	0 30

QA/QC Data

SDG I.D.: GBZ46415

Parameter	Blank	BIk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
2-Chlorotoluene	ND	1.0	100	97	3.0				70 - 130	30
2-Hexanone	ND	5.0	93	98	5.2				70 - 130	30
2-Isopropyltoluene	ND	1.0	101	98	3.0				70 - 130	30
4-Chlorotoluene	ND	1.0	98	95	3.1				70 - 130	30
4-Methyl-2-pentanone	ND	5.0	104	103	1.0				70 - 130	30
Acetone	ND	5.0	95	107	11.9				70 - 130	30
Acrylonitrile	ND	5.0	96	107	10.8				70 - 130	30
Benzene	ND	0.70	102	98	4.0				70 - 130	30
Bromobenzene	ND	1.0	100	98	2.0				70 - 130	30
Bromochloromethane	ND	1.0	101	101	0.0				70 - 130	30
Bromodichloromethane	ND	0.50	107	105	1.9				70 - 130	30
Bromoform	ND	1.0	116	117	0.9				70 - 130	30
Bromomethane	ND	1.0	107	99	7.8				70 - 130	30
Carbon Disulfide	ND	1.0	115	110	4.4				70 - 130	30
Carbon tetrachloride	ND	1.0	110	107	2.8				70 - 130	30
Chlorobenzene	ND	1.0	102	99	3.0				70 - 130	30
Chloroethane	ND	1.0	97	92	5.3				70 - 130	30
Chloroform	ND	1.0	105	103	1.9				70 - 130	30
Chloromethane	ND	1.0	91	89	2.2				70 - 130	30
cis-1,2-Dichloroethene	ND	1.0	107	102	4.8				70 - 130	30
cis-1,3-Dichloropropene	ND	0.40	109	103	5.7				70 - 130	30
Dibromochloromethane	ND	0.50	112	112	0.0				70 - 130	30
Dibromomethane	ND	1.0	102	102	0.0				70 - 130	30
Dichlorodifluoromethane	ND	1.0	91	86	5.6				70 - 130	30
Ethylbenzene	ND	1.0	102	98	4.0				70 - 130	30
Hexachlorobutadiene	ND	0.40	100	99	1.0				70 - 130	30
Isopropylbenzene	ND	1.0	102	99	3.0				70 - 130	30
m&p-Xylene	ND	1.0	101	100	1.0				70 - 130	30
Methyl ethyl ketone	ND	5.0	105	119	12.5				70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	101	99	2.0				70 - 130	30
Methylene chloride	ND	1.0	102	96	6.1				70 - 130	30
Naphthalene	ND	1.0	97	99	2.0				70 - 130	30
n-Butylbenzene	ND	1.0	103	101	2.0				70 - 130	30
n-Propylbenzene	ND	1.0	100	95	5.1				70 - 130	30
o-Xylene	ND	1.0	101	98	3.0				70 - 130	30
p-Isopropyltoluene	ND	1.0	101	98	3.0				70 - 130	30
sec-Butylbenzene	ND	1.0	109	103	5.7				70 - 130	30
Styrene	ND	1.0	102	100	2.0				70 - 130	30
tert-Butylbenzene	ND	1.0	103	93	10.2				70 - 130	30
Tetrachloroethene	ND	1.0	104	100	3.9				70 - 130	30
Tetrahydrofuran (THF)	ND	2.5	99	104	4.9				70 - 130	30
Toluene	ND	1.0	100	98	2.0				70 - 130	30
trans-1,2-Dichloroethene	ND	1.0	107	100	6.8				70 - 130	30
trans-1,3-Dichloropropene	ND	0.40	104	101	2.9				70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0	94	112	17.5				70 - 130	30
Trichloroethene	ND	1.0	103	99	4.0				70 - 130	30
Trichlorofluoromethane	ND	1.0	110	104	5.6				70 - 130	30
Trichlorotrifluoroethane	ND	1.0	109	101	7.6				70 - 130	30
Vinyl chloride	ND	1.0	97	93	4.2				70 - 130	30
% 1,2-dichlorobenzene-d4	99	%	102	101	1.0				70 - 130	30
% Bromofluorobenzene	95	%	101	103	2.0				70 - 130	30
% Dibromofluoromethane	97	%	99	100	1.0				70 - 130	30
% Toluene-d8	100	%	102	100	2.0				70 - 130	30
, o Toldollo do	100	70	102	100	2.0				. 5 150	

QA/QC Data

%

%

% % LCSD **RPD** LCS LCS MS MSD MS Rec RPD

%

%

SDG I.D.: GBZ46415

RPD

Limits

Limits

Parameter Comment:

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Blk

Blank RL

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 410871 (ug/L), QC Sample No: BZ46667 (BZ46426, BZ46427, BZ46428, BZ46429)

Semivolatiles by SIM - Water

_							
2-Methylnaphthalene	ND	0.05	62	61	1.6	30 - 130	20
Acenaphthene	ND	0.05	85	85	0.0	30 - 130	20
Acenaphthylene	ND	0.04	92	96	4.3	30 - 130	20
Anthracene	ND	0.02	96	97	1.0	30 - 130	20
Benz(a)anthracene	ND	0.02	89	91	2.2	30 - 130	20
Benzo(a)pyrene	ND	0.02	100	103	3.0	30 - 130	20
Benzo(b)fluoranthene	ND	0.02	98	99	1.0	30 - 130	20
Benzo(ghi)perylene	ND	0.02	81	82	1.2	30 - 130	20
Benzo(k)fluoranthene	ND	0.02	97	95	2.1	30 - 130	20
Chrysene	ND	0.02	79	82	3.7	30 - 130	20
Dibenz(a,h)anthracene	ND	0.01	96	97	1.0	30 - 130	20
Fluoranthene	ND	0.04	94	95	1.1	30 - 130	20
Fluorene	ND	0.05	90	91	1.1	30 - 130	20
Indeno(1,2,3-cd)pyrene	ND	0.02	91	92	1.1	30 - 130	20
Naphthalene	ND	0.05	51	52	1.9	30 - 130	20
Phenanthrene	ND	0.05	81	83	2.4	30 - 130	20
Pyrene	ND	0.02	97	98	1.0	30 - 130	20
% 2-Fluorobiphenyl	54	%	75	80	6.5	30 - 130	20
% Nitrobenzene-d5	69	%	58	61	5.0	30 - 130	20
% Terphenyl-d14	76	%	98	99	1.0	30 - 130	20
Comment:							

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

December 06, 2017

Wednesday, December 06, 2017 Criteria: CT: GWP, RV

Sample Criteria Exceedances Report GBZ46415 - FO-DAS

State:	CT		05240410 10 570				RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BZ46415	\$8260GWR	1,2-Dibromo-3-chloropropane	CT / RSR GWPC (ug/l) / APS Organics	ND	0.50	0.2	0.2	ug/L
BZ46415	\$8260GWR	1,2-Dibromoethane	CT / RSR GWPC (ug/l) / Volatiles	ND	0.25	0.05	0.05	ug/L
BZ46415	\$8260GWR	Acrylonitrile	CT / RSR GWPC (ug/l) / Volatiles	ND	2.5	0.5	0.5	ug/L
BZ46416	\$8260GWR	1,2-Dibromo-3-chloropropane	CT / RSR GWPC (ug/l) / APS Organics	ND	0.50	0.2	0.2	ug/L
BZ46416	\$8260GWR	1,2-Dibromoethane	CT / RSR GWPC (ug/l) / Volatiles	ND	0.25	0.05	0.05	ug/L
BZ46416	\$8260GWR	Acrylonitrile	CT / RSR GWPC (ug/l) / Volatiles	ND	2.5	0.5	0.5	ug/L
BZ46417	\$8260GWR	1,2-Dibromo-3-chloropropane	CT / RSR GWPC (ug/l) / APS Organics	ND	0.50	0.2	0.2	ug/L
BZ46417	\$8260GWR	1,2-Dibromoethane	CT / RSR GWPC (ug/l) / Volatiles	ND	0.25	0.05	0.05	ug/L
BZ46417	\$8260GWR	Acrylonitrile	CT / RSR GWPC (ug/l) / Volatiles	ND	2.5	0.5	0.5	ug/L
BZ46418	\$8260GWR	1,2-Dibromo-3-chloropropane	CT / RSR GWPC (ug/l) / APS Organics	ND	0.50	0.2	0.2	ug/L
BZ46418	\$8260GWR	1,2-Dibromoethane	CT / RSR GWPC (ug/l) / Volatiles	ND	0.25	0.05	0.05	ug/L
BZ46418	\$8260GWR	Acrylonitrile	CT / RSR GWPC (ug/l) / Volatiles	ND	2.5	0.5	0.5	ug/L
BZ46419	\$8260GWR	1,2-Dibromo-3-chloropropane	CT / RSR GWPC (ug/l) / APS Organics	ND	0.50	0.2	0.2	ug/L
BZ46419	\$8260GWR	1,2-Dibromoethane	CT / RSR GWPC (ug/l) / Volatiles	ND	0.25	0.05	0.05	ug/L
BZ46419	\$8260GWR	Acrylonitrile	CT / RSR GWPC (ug/l) / Volatiles	ND	2.5	0.5	0.5	ug/L
BZ46420	\$8260GWR	1,2-Dibromo-3-chloropropane	CT / RSR GWPC (ug/l) / APS Organics	ND	0.50	0.2	0.2	ug/L
BZ46420	\$8260GWR	1,2-Dibromoethane	CT / RSR GWPC (ug/l) / Volatiles	ND	0.25	0.05	0.05	ug/L
BZ46420	\$8260GWR	Acrylonitrile	CT / RSR GWPC (ug/l) / Volatiles	ND	2.5	0.5	0.5	ug/L
BZ46421	\$8260GWR	1,2-Dibromo-3-chloropropane	CT / RSR GWPC (ug/l) / APS Organics	ND	0.50	0.2	0.2	ug/L
BZ46421	\$8260GWR	1,2-Dibromoethane	CT / RSR GWPC (ug/l) / Volatiles	ND	0.25	0.05	0.05	ug/L
BZ46421	\$8260GWR	Acrylonitrile	CT / RSR GWPC (ug/l) / Volatiles	ND	2.5	0.5	0.5	ug/L
BZ46422	\$8260GWR	1,2-Dibromo-3-chloropropane	CT / RSR GWPC (ug/l) / APS Organics	ND	0.50	0.2	0.2	ug/L
BZ46422	\$8260GWR	1,2-Dibromoethane	CT / RSR GWPC (ug/l) / Volatiles	ND	0.25	0.05	0.05	ug/L
BZ46422	\$8260GWR	Acrylonitrile	CT / RSR GWPC (ug/l) / Volatiles	ND	2.5	0.5	0.5	ug/L
BZ46423	\$8100CTSIMR	Benzo(ghi)perylene	CT / RSR GWPC (ug/l) / APS Organics	3.6	0.05	0.48	0.48	ug/L
BZ46423		Indeno(1,2,3-cd)pyrene	CT / RSR GWPC (ug/l) / APS Organics	3.5	0.05	0.1	0.1	ug/L
BZ46423		Dibenz(a,h)anthracene	CT / RSR GWPC (ug/l) / APS Organics	1.3	0.01	0.1	0.1	ug/L
BZ46423		Benzo(k)fluoranthene	CT / RSR GWPC (ug/l) / Semivolatiles	3.1	0.05	0.5	0.5	ug/L
BZ46423		Benzo(a)pyrene	CT / RSR GWPC (ug/l) / Semivolatiles	4.3	0.05	0.2	0.2	ug/L
BZ46423		Benz(a)anthracene	CT / RSR GWPC (ug/l) / Semivolatiles	3.0	0.05	0.06	0.06	ug/L
BZ46423		Benzo(b)fluoranthene	CT / RSR GWPC (ug/l) / Semivolatiles	4.6	0.05	0.08	0.08	ug/L
BZ46423	\$8260GWR	1,2-Dibromo-3-chloropropane	CT / RSR GWPC (ug/l) / APS Organics	ND	0.50	0.2	0.2	ug/L
BZ46423	\$8260GWR	1,2-Dibromoethane	CT / RSR GWPC (ug/l) / Volatiles	ND	0.25	0.05	0.05	ug/L
BZ46423	\$8260GWR	Acrylonitrile	CT / RSR GWPC (ug/l) / Volatiles	ND	2.5	0.5	0.5	ug/L
BZ46424	\$8260GWR	1,2-Dibromo-3-chloropropane	CT / RSR GWPC (ug/l) / APS Organics	ND	0.50	0.2	0.2	ug/L

Wednesday, December 06, 2017 Criteria: CT: GWP, RV

Sample Criteria Exceedances Report GBZ46415 - FO-DAS

State:	CT		GB240410 1 G B/10				RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BZ46424	\$8260GWR	Acrylonitrile	CT / RSR GWPC (ug/l) / Volatiles	ND	2.5	0.5	0.5	ug/L
BZ46424	\$8260GWR	1,2-Dibromoethane	CT / RSR GWPC (ug/l) / Volatiles	ND	0.25	0.05	0.05	ug/L
BZ46425	\$8100CTSIMR	Dibenz(a,h)anthracene	CT / RSR GWPC (ug/l) / APS Organics	1.5	0.01	0.1	0.1	ug/L
BZ46425		Indeno(1,2,3-cd)pyrene	CT / RSR GWPC (ug/l) / APS Organics	3.4	0.05	0.1	0.1	ug/L
BZ46425	\$8100CTSIMR	Benzo(ghi)perylene	CT / RSR GWPC (ug/l) / APS Organics	3.5	0.05	0.48	0.48	ug/L
BZ46425	\$8100CTSIMR	Benzo(b)fluoranthene	CT / RSR GWPC (ug/l) / Semivolatiles	3.3	0.05	0.08	0.08	ug/L
BZ46425	\$8100CTSIMR	Benzo(k)fluoranthene	CT / RSR GWPC (ug/l) / Semivolatiles	3.3	0.05	0.5	0.5	ug/L
BZ46425	\$8100CTSIMR	Benzo(a)pyrene	CT / RSR GWPC (ug/l) / Semivolatiles	3.7	0.05	0.2	0.2	ug/L
BZ46425	\$8100CTSIMR	Benz(a)anthracene	CT / RSR GWPC (ug/l) / Semivolatiles	1.3	0.05	0.06	0.06	ug/L
BZ46425	\$8260GWR	1,2-Dibromo-3-chloropropane	CT / RSR GWPC (ug/l) / APS Organics	ND	0.50	0.2	0.2	ug/L
BZ46425	\$8260GWR	1,2-Dibromoethane	CT / RSR GWPC (ug/l) / Volatiles	ND	0.25	0.05	0.05	ug/L
BZ46425	\$8260GWR	Acrylonitrile	CT / RSR GWPC (ug/l) / Volatiles	ND	2.5	0.5	0.5	ug/L
BZ46425	\$PEST_GAWR	Aldrin	CT / RSR GWPC (ug/l) / APS Organics	ND	0.13	0.05	0.05	ug/L
BZ46425	\$PEST_GAWR	a-BHC	CT / RSR GWPC (ug/l) / APS Organics	ND	0.13	0.05	0.05	ug/L
BZ46425	\$PEST_GAWR	b-BHC	CT / RSR GWPC (ug/l) / APS Organics	ND	0.13	0.05	0.05	ug/L
BZ46425	\$PEST_GAWR	d-BHC	CT / RSR GWPC (ug/l) / APS Organics	ND	0.13	0.05	0.05	ug/L
BZ46425	\$PEST_GAWR	Chlordane	CT / RSR GWPC (ug/l) / APS Organics	ND	15	0.3	0.3	ug/L
BZ46425	\$PEST_GAWR	Chlordane	CT / RSR GWPC (ug/l) / Pest/PCB/TPH	ND	15	0.3	0.3	ug/L
BZ46425	\$PEST_GAWR	4,4' -DDT	CT / RSR GWPC (ug/l) / APS Organics	3.0	2.6	0.1	0.1	ug/L
BZ46425	\$PEST_GAWR	Dieldrin	CT / RSR GWPC (ug/l) / Pest/PCB/TPH	ND	0.13	0.002	0.002	ug/L
BZ46425	\$PEST_GAWR	Toxaphene	CT / RSR GWPC (ug/l) / Pest/PCB/TPH	ND	51	3	3	ug/L
BZ46425	CR-WM10	Chromium (10um)	CT / RSR GWPC (ug/l) / Inorganics	0.064	0.001	0.05	0.05	mg/L
BZ46425	PB-WM10	Lead (10um)	CT / RSR GWPC (ug/l) / Inorganics	0.054	0.002	0.015	0.015	mg/L
BZ46426	\$8260GWR	1,2-Dibromo-3-chloropropane	CT / RSR GWPC (ug/l) / APS Organics	ND	0.50	0.2	0.2	ug/L
BZ46426	\$8260GWR	Acrylonitrile	CT / RSR GWPC (ug/l) / Volatiles	ND	2.5	0.5	0.5	ug/L
BZ46426	\$8260GWR	1,2-Dibromoethane	CT / RSR GWPC (ug/l) / Volatiles	ND	0.25	0.05	0.05	ug/L
BZ46427	\$8260GWR	1,2-Dibromo-3-chloropropane	CT / RSR GWPC (ug/l) / APS Organics	ND	0.50	0.2	0.2	ug/L
BZ46427	\$8260GWR	Acrylonitrile	CT / RSR GWPC (ug/l) / Volatiles	ND	2.5	0.5	0.5	ug/L
BZ46427	\$8260GWR	1,2-Dibromoethane	CT / RSR GWPC (ug/l) / Volatiles	ND	0.25	0.05	0.05	ug/L
BZ46428	\$8260GWR	1,2-Dibromo-3-chloropropane	CT / RSR GWPC (ug/l) / APS Organics	ND	0.50	0.2	0.2	ug/L
BZ46428	\$8260GWR	1,2-Dibromoethane	CT / RSR GWPC (ug/l) / Volatiles	ND	0.25	0.05	0.05	ug/L
BZ46428	\$8260GWR	Acrylonitrile	CT / RSR GWPC (ug/l) / Volatiles	ND	2.5	0.5	0.5	ug/L
BZ46429	\$8260GWR	1,2-Dibromo-3-chloropropane	CT / RSR GWPC (ug/l) / APS Organics	ND	0.50	0.2	0.2	ug/L
BZ46429	\$8260GWR	Acrylonitrile	CT / RSR GWPC (ug/l) / Volatiles	ND	2.5	0.5	0.5	ug/L
BZ46429	\$8260GWR	1,2-Dibromoethane	CT / RSR GWPC (ug/l) / Volatiles	ND	0.25	0.05	0.05	ug/L

Wednesday, December 06, 2017 Criteria: CT: GWP, RV

Sample Criteria Exceedances Report GBZ46415 - FO-DAS

State: CT

RL Analysis SampNo Acode Phoenix Analyte Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Phoenix Environmental Labs, Inc. Client: Fuss & O'Neill, Inc.

Project Location: CT DOT HIGGANUM MAINTENANCE Project Number:

Laboratory Sample ID(s): BZ46415-BZ46429 Sampling Date(s): 11/22/2017

List RCP Methods Used (e.g., 8260, 8270, et cetera) 6010, 7470/7471, 8081, 8082, 8260, 8270

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✓ Yes □ No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	<u>VPH and EPH methods only:</u> Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods)	☐ Yes ☐ No ☑ NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	✓ Yes □ No □ NA
4	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents acheived? See Section: ICP Narration.	☐ Yes ☑ No
5	a) Were reporting limits specified or referenced on the chain-of-custody?	✓ Yes □ No
	b) Were these reporting limits met?	☐ Yes 🗹 No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	☐ Yes ☑ No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	✓ Yes □ No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

the undersigned, attest under the pains and penalties of perjury that, to the best of my nowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.
Authorized Signature:
Printed Name: Ethan Lee Date: Wednesday, December 06, 2017
Tame of Laboratory Phoenix Environmental Labs, Inc.

This certification form is to be used for RCP methods only.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

December 06, 2017 SDG I.D.: GBZ46415

SDG Comments

Metals Analysis:

The client requested a shorter list of elements than the 6010 RCP list. Only the RCRA 8 Metals are reported as requested on the chain of custody.

8270 Semi-volatile Organics:

The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-of-custody.

BZ46425 - Sample(s) required a dilution for Pesticides due to the presence of large quantities of target pesticides in the sample. This resulted in elevated reporting limits that exceed the requested criteria for one or more analytes.

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

MERLIN 11/27/17 08:15 Rick Schweitzer, Chemist 11/27/17

BZ46416, BZ46417, BZ46418, BZ46419, BZ46420, BZ46421, BZ46422, BZ46423, BZ46424, BZ46425, BZ46426, BZ46427, BZ46428, BZ46429

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 410761 (BZ45176)

BZ46416

All LCS recoveries were within 80 - 120 with the following exceptions: None.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. MS acceptance range is 75-125%.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. MS acceptance range is 75-125%.

QC (Site Specific):

Batch 410763 (BZ46418)

 $BZ46417,\ BZ46418,\ BZ46420,\ BZ46421,\ BZ46422,\ BZ46423,\ BZ46424,\ BZ46425,\ BZ46426,\ BZ46427,\ BZ46428,\ BZ46429,\ BZ46$

All LCS recoveries were within 80 - 120 with the following exceptions: None.

All MS recoveries were within 75 - 125 with the following exceptions: None.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. MS acceptance range is 75-125%.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. MS acceptance range is 75-125%.

ICP Metals Narration

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Certification Report

December 06, 2017 SDG I.D.: GBZ46415

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? No.

QC Batch 410983 (Samples: BZ46427, BZ46428, BZ46429): -----

A trace amount of an analyte was found in blank. Due to the concentration in the blank relative to the samples, no bias is suspected. (Aqueous- Sodium(BZ46427, BZ46428, BZ46429))

Instrument:

BLUE 11/27/17 06:33 Emily Ko

Emily Kolominskaya, Mike Arsenault, Chemist 11/27/17

BZ46416, BZ46417, BZ46418, BZ46419, BZ46420, BZ46421, BZ46422, BZ46423, BZ46424, BZ46425, BZ46426

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria. The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

BLUE 11/28/17 07:32

Emily Kolominskaya, Mike Arsenault, Chemist 11/28/17

BZ46417, BZ46419, BZ46420, BZ46421, BZ46422, BZ46423, BZ46424, BZ46425, BZ46426, BZ46427, BZ46428, BZ46429

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria. The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

BLUE 11/29/17 07:20

Emily Kolominskaya, Mike Arsenault, Chemist 11/29/17

BZ46427, BZ46428, BZ46429

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria. The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 410850 (BZ46245)

BZ46416, BZ46417, BZ46418, BZ46419, BZ46420, BZ46421, BZ46422, BZ46423, BZ46424, BZ46425, BZ46426

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Certification Report

December 06, 2017 SDG I.D.: GBZ46415

ICP Metals Narration

All LCS recoveries were within 75 - 125 with the following exceptions: None.

Batch 410983 (BZ46334)

BZ46427, BZ46428, BZ46429

All LCS recoveries were within 75 - 125 with the following exceptions: None.

LACHAT

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

LACHAT 11/22/17-2

Michael Tran, Chemist 11/22/17

BZ46416, BZ46417, BZ46418, BZ46419, BZ46420, BZ46421, BZ46422, BZ46423, BZ46424, BZ46425, BZ46426, BZ46426, BZ46428, BZ46429 The initial calibration met all criteria including a standard run at the reporting level.

All method verification standards and blanks met criteria.

QC (Batch Specific):

Batch 410728 (BZ45367)

BZ46416

All LCS recoveries were within 90 - 110 with the following exceptions: None.

QC (Site Specific):

Batch 410729 (BZ46418)

BZ46417, BZ46418, BZ46419, BZ46420, BZ46421, BZ46422, BZ46423, BZ46424, BZ46425, BZ46426, BZ46427, BZ46428, BZ46429

All LCS recoveries were within 90 - 110 with the following exceptions: None.

All MS recoveries were within 90 - 110 with the following exceptions: None.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD5 11/28/17-1

Adam Werner, Chemist 11/28/17

BZ46421, BZ46422, BZ46423, BZ46428

The initial calibration (PC1110AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PC1110BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 410854 (BZ46276)

BZ46421, BZ46422, BZ46423, BZ46428

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

December 06, 2017 SDG I.D.: GBZ46415

PCB Narration

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

PEST Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD7 11/28/17-1 Car

Carol Wohlmuth, Chemist 11/28/17

BZ46421, BZ46424, BZ46425, BZ46427

The initial calibration (PSN27AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PSN27BI) RSD for the compound list was less than 20% except for the following compounds: None.

The Endrin and DDT breakdown does not exceed 15% except for the following compounds:None.

The Endrin and DDT breakdown does not exceed the maximum of 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 20% except for the following compounds:None.

QC (Batch Specific):

Batch 410853 (BZ46276)

BZ46421, BZ46424, BZ46425, BZ46427

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

A LCS and LCS duplicate were performed instead of a MS and MSD. Alpha and gamma chlordane were spiked and analyzed instead of technical chlordane. Gamma chlordane recovery is reported as chlordane in the LCS and LCSD

SVOASIM Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

CHEM04 11/29/17-1

Damien Drobinski, Chemist 11/29/17

BZ46422, BZ46423, BZ46424, BZ46425, BZ46426, BZ46427, BZ46428, BZ46429

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

In the event that lower detection levels were requested, the samples may have been analyzed by selective ion monitoring (SIM) mode.

Initial Calibration Verification (CHEM04/SIM_1113):

94% of target compounds met criteria.

The following compounds had %RSDs >20%: Chrysene 23% (20%)

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM04/1129_02-SIM_1113):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

92% of target compounds met criteria.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

December 06, 2017 SDG I.D.: GBZ46415

SVOASIM Narration

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

CHEM07 11/28/17-2

Damien Drobinski, Chemist 11/28/17

BZ46416, BZ46417, BZ46418, BZ46419, BZ46420, BZ46421

Initial Calibration Verification (CHEM07/SIM_1127):

94% of target compounds met criteria.

The following compounds had %RSDs >20%: Chrysene 30% (20%)

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM07/1128_18-SIM_1127):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

98% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 410834 (BZ46249)

BZ46416, BZ46417, BZ46418, BZ46419, BZ46420, BZ46421, BZ46422, BZ46423, BZ46424, BZ46425

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Batch 410871 (BZ46667)

BZ46426, BZ46427, BZ46428, BZ46429

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

December 06, 2017 SDG I.D.: GBZ46415

VOA Narration

CHEM23 11/26/17-1

Michael Hahn, Chemist 11/26/17

BZ46415, BZ46416, BZ46417, BZ46418, BZ46419, BZ46420, BZ46421, BZ46422, BZ46423, BZ46424, BZ46425, BZ46426, BZ46427, BZ46428, BZ46429

Initial Calibration Verification (CHEM23/VOA23_1120):

98% of target compounds met criteria.

The following compounds had %RSDs >20%: Chloroethane 23% (20%)

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM23/1126_03-VOA23_1120):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 410881 (BZ46415)

BZ46415, BZ46416, BZ46417, BZ46418, BZ46419, BZ46420, BZ46421, BZ46422, BZ46423, BZ46424, BZ46425, BZ46426, BZ46427, BZ46428, BZ46429

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%. Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Temperature Narration

The samples in this delivery group were received at 1.2°C. (Note acceptance criteria is above freezing up to 6°C)

FUSS & O'NEIL	FUSS & O'NEILL	Harlowd Road, Mancicest, 1-56 Quary Road, Trousboll, CT (1419 Richiam) Street, Colombia	X [46] Hamfond Road, Manderester, CT (1604) 1-36 Quarry Road, Triniabell, CT (464) 11 [419] Richiand Sirect, Columbia, SC (2020)		. "S buceware Deve, West Springfield, MA 101089 1317 haw Horse Wat, Suite 364, Previdence, RI 429108 80 Washington Street, State 404, Borgeberepsis, AN	, West Springfield rr, Smite 364, Pwra cer, Smite 404, Pen		: i Volèse r.		1.2 1
CH	CHAIN-OF-CUSTODY RI	-CUSTO	DY RE	ECORD	38417		The House State St	C 2 Iboar X Sendode	Turnaround	1.1 Other dies.
PROJECT NAME			Propertional	NOL		PROJEC	PROJECT NUMBER		_	LAIRORATORY
CT DOT HIGHMAN MANTENENCE/REPORK FACEURY REPORTTO: STEPPING WICKSZCHALEKUFIC) + DAN INVOICETO: + DAN P.O. NO.:	MANTENBAČI E WIERSZEAH Į	CARPOIK FIL	TA#	₹	A. C.T Analysis Request	201 <i>6</i>	2016, 476. AZ	N.	走 ^る	Containors & M.
Sampler's Signature:	0	3	Date:	Date: 11/22/17			30,	ેંલ	'(\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Source Codes: MW - Moraboring Wel. PW - SW - Surface Water ST- 9	Nuter ei	Te Treatment Lactive W. Waste A. Are	iv S Soil P C Concrete	B Sediment		J. k45	1 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	~~ M _⊙ =	N Dept.	41 (May 100 10) (May
N Octor The BLANK	AN K					Σ Σ Σ Σ		Dan.	ं है। १ ० ह	10 M
Born Thurster Cleek No. 1 2 3 d	Saught Number	.undxr	Source Date Code Sampled	Fine Sumpkel	Se S	W. COS	They steps	13/2 ₆ ,	No sales and sal	(To almos)
3	1305171122-01	. J	× 11/2	्रावेश-राव्या	×	:	4/4/1/5	4		
		707	Med	l	× ×		de410	3 2 1		
ુ		2دع-		isel			14041	2		METALS ONLY FLITERED
(उन	,	-c4		0101			1118	7		
So	•	-05		1213			61h0h	7		ONLY METALS FILLERED
3	r	-06		၁၂၂			07h 1/h	7		!
t.o	1	-07-		1347		×	High	7.1		
ಕ್ಷ	!	-t .		12.32		×	46432	~		OND WIES
2	•	-0۾		1559		×	Sehoh	2		
2	,	٠١٥	구 - -	140tr	アプラ	X	46424	434		>
Transter Nearlier	Reinquebrei By		Accepted Ba	>,/(Time	socalass pater	Charge Exceptions: XCI The Excupt	11QV-QC		
1887 1887	7		J	1/2 h	4 [G.16]	perting and Dated	Walt 7 G 1 G Reporting and Detection Lamin Requirements & BCD Detected to	KRCPD by rables	. VSCP CAVAGER	John.
			:				CAH, CANC, KESVC.			
÷										

FUSS&O'N	
5	

	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
£3:	-	
80670-1		

FUSS & O'NEILL STATE OF STATE	MAG Barriori Road, Manchaster, CT. 160400 El 56 Quarry Road, Trumbull, CT. 166411 El 1419 Richland Street, Columbia, SC 29203.		L. Schacestate Drive, Wess Spurghedd, M.V. othogo. L. M. Insan Horse Way, Suite 204, Providence, RI 102008. L. Sti Washington Street, Sonte 401, Polighkeepse, N.Y. (2) Other	2 × :
CHAIN-OF-	CHAIN-OF-CUSTODY RECOR	U 38416	Turnaround \$12.24 Ibour = 1.1.2 Hour 1.38 Ibour \$4.55 minderd days.	und (1.10ther days) (Succionge Applies
Project NAME	Project Location		Į.	_
CT DUT HIGHMUN WANTENANCE REDAIR FACILL TY REPORT TO: STEPPANE WERS ECHALEL (FIG.) FDAN : INVOICE TO: D.D. NO.:	T_ 3	Y HECKATHNUM, CT JAHNE (FR.C.) Madysis Request	76 AZU	Containers
Signature: ss oring Well PW:- Potable Water St Stormwater	T. Tresment Lacing S Sed B Sediment Where A Mr C. Courte	-+	Ten and	TO T
Discr. Transfer Cleark Sample N	Storre D.re Gode Sangded	Tiene Control of Contr	Section 1975 (CV 1976) Section 1970 (CV 1976) Sectio	Cool State
136517112	MW 11/2/17	× × × ×	4025 331	COND WATEL
2 ± 3	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	1641 × × × × × × × × × × × × × × × × × × ×	X (1042) 351 41428 331 46439 321	ALTERIAS
Transfer Redmqushed By Number	Macqued By	Date Time Charge I.	Sceptions & CT Las Exempt (1970). Other Digitals Black Democretical Black Democretical Black Democretical Branch Describbs (1970). P. C.	MI P.C. WILLER

GBZ 46415

Shannon Wilhelm

From:

Stefanie Wierszchalek < SWierszchalek@fando.com>

Sent:

Monday, November 27, 2017 08:00 AM

To: Cc: Deb Lawrie; Dan Jahne

Shannon Wilhelm

Subject:

RE: CT DOT Higganum Maintenance received 11/22

Good morning Deb,

These should be RCRA 8 Metals. Please let me know if you have any other questions or need additional information.

Thanks,

Stefanie Wierszchalek
Senior Hydrogeologist
Fuss & O'Neill, Inc. | 146 Hartford Road | Manchester, CT 06040
860.646.2469 x5503 | swierszchalek@fando.com | cell: 860.670.4385
www.lendo.com | belter | testions | directions

From: Deb Lawrie [mailto:deb@phoenixlabs.com]
Sent: Wednesday, November 22, 2017 8:15 PM

To: Dan Jahne; Stefanie Wierszchalek

Cc: Shannon Wilhelm

Cell: 1-860-331-6364

Subject: CT DOT Higganum Maintenance received 11/22

Good Morning,

Please let us know what metals need to be analyzed for the attached chains.

Thanks,

Deb Lawrie Client Services – Project Manager Phoenix Environmental Laboratories 587 East Middle Turnpike Manchester, CT 06040 Ph: 1-860-645-1102

1